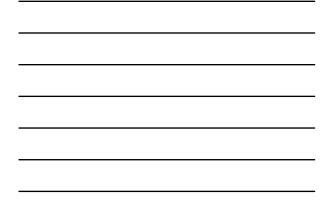
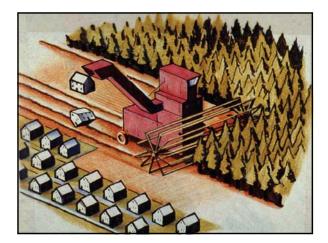
Doing It the Right Way: Porous Pavement with Underground Recharge Beds

Cahill Associates Environmental Consultants


West Chester, PA 19382 Cape May, NJ 08204

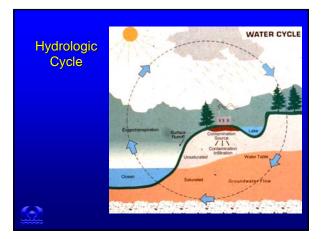
www.thcahill.com


The Problem

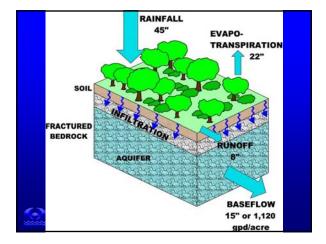


SUSTAINABILITY

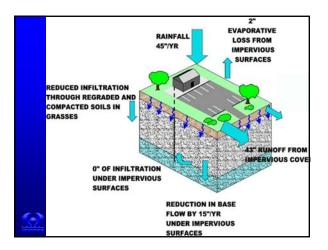
Sustain the quality and quantity of our natural resources for use by future generations

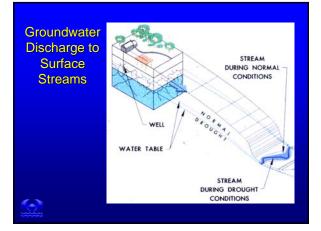


Stormwater Management


Only considered during the past thirty years

Land Development Alters the Hydrologic Cycle


- Reduces Infiltration
- Increases Direct Runoff
- Increases Pollutants





Surface runoff increases by 36" (3 ft) per year

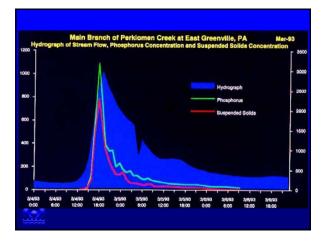
INCREASED RUNOFF

- ET ADDED (PLANTS) 21" TO 30"/YR
- INFILTRATION PREVENTED 6" TO 15" /YR

BASE FLOW

- Accounts for stream flow 11 months/yr.
- Comprises some 60% of total annual flow

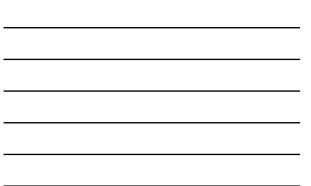
NPS POLLUTION

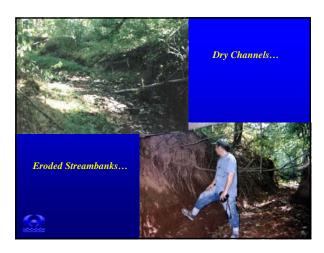

- Overwhelming mass transport during runoff in most watersheds – 25 days/yr
- NPS transport accumulates largely in lacustrine and estuarine systems
- Excessive enrichment is major impact

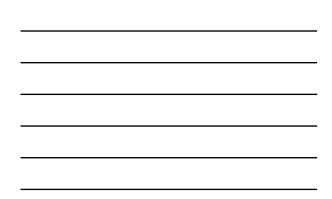
The Problem: Water Quality

Phosphorus Nitrogen Sediment Hydrocarbons Pathogenic bacteria Metals/toxics

NON-POINT SOURCE POLLUTANTS

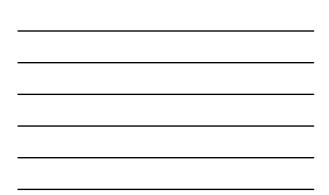

- Particulate associated travel with sediment; phosphorus, metals, organic matter, debris (human) and detritus (plant matter)
- Solutes dissolved in stormwater; nitrates, salts, herbicides and pesticides





Land Development Impacts on Stream Morphology:

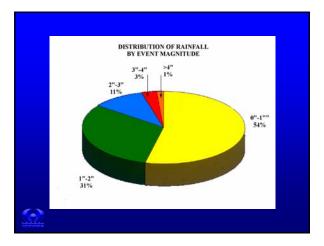
- Channel widening, downcutting, scouring
- Stream bank erosion
- Imbedded stream substrate with benthic impacts
- Loss of pools, riffles



Effects of Urbanization on Watershed

- Flash Flooding and Streambank Erosion.
- Diminished Flow During Dry Periods.
- Degraded Water Quality.

Flood and drought are opposite sides of the same coin

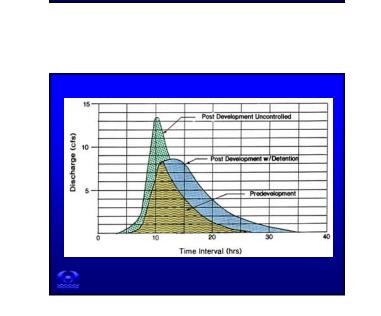


STORMWATER MANAGEMENT

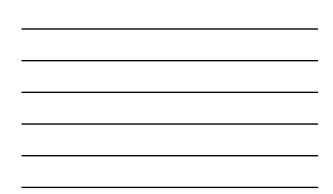
- Water Quantity
- Water Quality
- Rate is minor issue

"<u>Sustainable</u>" Stormwater Management means Maintaining the Hydrologic Balance that Existed Before Development

• Infiltrating the Net Increase in Volume of Runoff for the 2-Year Storm Event.

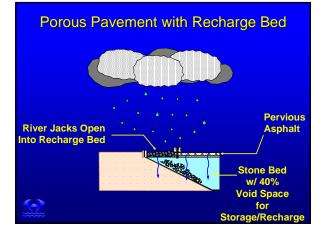


Traditional Stormwater Management


- Control Peak Rate of Runoff after Development to Pre-Development Rate.
- Detention Basins

- Temporary Storage
- Sediment Control
- Does Not Address Increase in Volume of Runoff



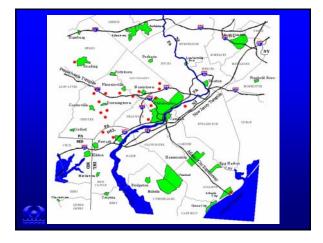

Sustainable Site Design and Water Resources Management

Specific design methods and materials

INFILTRATION BMPS

- Infiltration Beds Beneath Porous
 Pavement
- Infiltration Trenches, Drains
- Infiltration Swales w/ Vegetation
- Infiltration Berms (sloped areas)

Porous Bituminous Pavement with Underground Recharge Beds



Porous bituminous pavement

- Developed by the Franklin Institute 1972
- Tested in pilot projects during 1970's
- Development of geotextiles in 1979
- Current design since 1980
- CA has built over 150 projects since 1980
- Outstanding engineering project 2000

5

Porous Pavement

- Over 30 installations at schools
- Oldest systems 1980-82
- Schools
 - Penn State University State College & Reading (2)
 - University of Rhode Island 1,000 cars
 - University of North Carolina (2) 1,500 cars

 - University of Michigan 2 sites
 Penn New School in Philadelphia playground
 - St. Joseph's School in Downingtown, PA
 - Springside School in Philadelphia

Porous Pavement Commercial installations

- DuPont, Verizon, SmithKline, Siemen's
- National Park Service, Fish & Wildlife, National **Forest Service**
- Libraries, Religious Centers, Prisons
- Industrial Ford and Alcoa
- Office Parks, Shopping Malls, Municipal Buildings

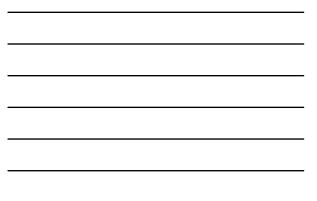
Porous Pavement

- What is it?
 - Asphalt in which fine particles are kept to a minimum
- Why?
 - This allows rainfall to drain through the pavement rather than running off

• Where does the rainfall go?

 A bed beneath the pavement receives rainfall from the pavement as well as inflow from other areas

Construction of Porous Pavement/Recharge Bed Systems


- Level, <u>uncompacted</u> subgrade
- Geotextile
- Clean, uniformly graded stone aggregate for 40% void space
- Porous bituminous asphalt
- Perimeter drains inlets

Porous or Standard Paving w/ Infiltration

Porous Asphalt Mix						
	US Standard Sieve Size	Percent Passing				
	1/2"	100				
	3/8"	95				
	#4	35				
	#8	15				
	#16	10				
	#30	2				
 5.75% to 6% Asphalt 						

Porous AC Pavement

• Fully permeable AC mix – 2.5" application

 \bigcirc

 \bigcirc

- Uniformly graded stone base reservoir-30"
- Geotextile on bottom to stop soil
- Flat bottom to allow uniform infiltration

Median Pollutant Removal (%) of Stormwater Treatment Practices						
POLLUTANT	INFILTRATION PRACTICES	Stormwater Wetlands	Stormwater Ponds Wet	Filtering Practices	Water Quality Swales	Stormwater Dry Ponds
Total Phosphorus	70	49	51	59	34	19
Soluble Phosphorus	85	35	66	3	38	-6
Total Nitrogen	51	30	33	38	84	25
Nitrate	82	67	43	-14	31	4
Copper	N/A	40	57	49	51	26
Zinc	99	44	66	88	71	26
TSS	95	76	80	86	81	47

Water quality benefits of porous pavement with infiltration from "Nationa Pollutant Removal Performance Database for Stormwater Treatment Practices" Center for Watershed Protection, June 2000

Asphalt Pavements The Evolution

Early Asphalt Pavements

- First record Babylon around 625 B.C
- First asphalt pavements in US late 19th Century

Pennsylvania Ave.

Bitulithic Pavements

- First successful, reproducible asphalt concrete surfaces
- Maximum aggregate size 75 mm graded down to dust
- F.J. Warren patent issued 1903 (Patent No. 757505)

Composite Bitulithic Pavement					
Rich Sand Asphalt Mix 50 mm Binder Course (Asphalt Cement and Broken Stone) 100+ mm Base (Oten DCC or other Base Meterials)					
(Often PCC or other Base Materials)					

HMA Pavements Today

- Dense graded
 Coarso & Eino
- Open Graded (Porous)
 OGFC used as surface

- ATPB used as drainage layer below pavement
- Stone Matrix Asphalt (SMA)

Open-Graded Mixes

- OGFC normally used for surface to:
 - Reduce splash and spray
 - Improve skid resistance
 - Reduce hydroplaning
 - Noise reduction
- ATPB used below pavement surface to:
 - Drain water below pavement to reduce chance of saturating unbound materials

OGFC

- Beginnings 1944 in California as Plant Mix Seal
- 1970's FHWA developed OGFC mix
 - AKA plant mix seal, popcorn mix, asphalt concrete friction course
- Permeable European Mix (PEM)
- Using polymers and fibers to increase asphalt content for durability

Water Normally Viewed as the Enemy of Pavements

- Engineers taught to keep water out.
 Soils become weaker when saturated
- Compact soils to increase strength
 - Also reduces permeability
- Seal cracks and joints to keep water out
- Install subdrains to drain moisture away from subgrade

Changing Views

- Engineers need to know when and where porous pavements can be used.
- Pavement structure will be thicker for porous pavements
 - Structural requirements
 - Water storage requirements
 - Frost depth

Structural Design

- Needs to be evaluated
- Probably won't control total thickness
- Use standard design procedures such as AASHTO, Asphalt Institute or DOT.

70,000	Acrous Pavement 42°-0° or Good Agent Mann Coole Agent Mann Coole Agent Mann Coole Agent Mann Vess Nake			ural D ample	•	Inputs ona	5
	Layer	SN	Thick (in)	Layer	SN	Thick (in)	
	OGFC	0.40	6	AC	0.44	8	
	АТВ	0.20	6	AB	0.14	7	
	Subbase	0.11	8				
		4.48			4.5		

Structural Design Min Thicknesses

Open Graded HMA – 2"

Evolution of Asphalt Binders

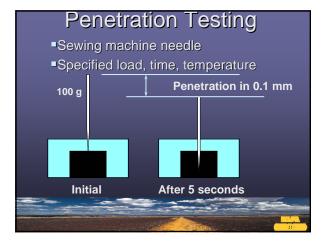
Pitch Lake—La Brea, Trinidad Discovered by Sir Walter Raleigh in 1595 (or 409 years ago) First use on streets in 1815 in Port of Spain, Trinidad and Tobago.

Asphalt Binders

- Asphalt refined from crude oil
 - California 18
 - Texas 1902
 - Now dominant source of asphalt binder
- Some TLA used still for special applications

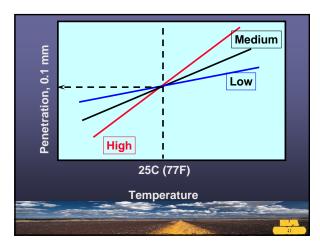
Early Specifications

Lake Asphalts


Appearance

- Solubility in carbon disulfide
- Petroleum asphalts (early 1900's)

Consistency


- Chewing
- Penetration machine
 - Measure consistency

Advantages

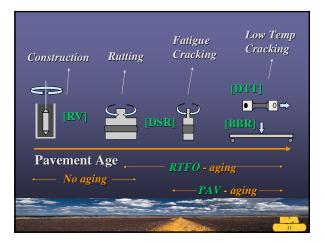
- Grades asphalt near average in-service temp.
- Fast
- Can be used in field labs
- Low capital costs
- Precision well established
- Temp. susceptibility can be determined

Disadvantages

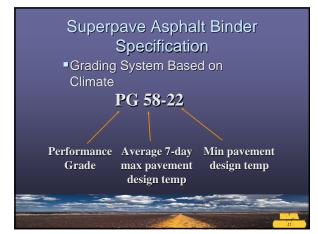
- Empirical test
- Shear rate
 - ■High
 - ■Variable
- Mixing and compaction temp. information not available
- Similar penetrations at 25°C (77°F) do not reflect wide differences in asphalts

Viscosity Graded Asphalts

- Fundamental property
- Wide range of temperatures
- Based on max. pavement surfact temp.
- Test method precision established
- Temperature susceptibility is
-
- Limits aging
- Information on mixing & compaction temps.


Disadvantages (Viscosity Grading)

- More expensive
- Longer testing time
- More technician skill needed
- Not applicable for Non-Newtonian materials
- Wide range of properties for same grade`


New Binder Specification Superpave – Performance Graded (PG)

- Fundamental properties related to pavement performance
- Environmental factors
- In-service & construction temperatures
- Short and long term aging

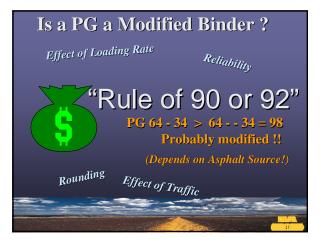
PG Binders

- Now used in most state
- Most states have developed three grades that are used in state.
 - Standard grade i.e. PG 64-22
 - One grade bump i.e. PG 70-22
 - Two grade bump i.e. PG 76-22
- Southeastern states standard grade PG 67-22
 Similar to old AC 30 grade
- California uses AR and PB grades

Which binder is right for Porous Asphalt Pavements?

- Recommend one or two grade bumps from standard grade
- Example:
 - Standard Grade PG 64-22
 - One grade bump PG 70-22
 - Two grade bump PG 76-22

Polymer Modifiers

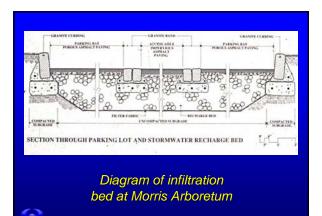

Reasons for use of polymer modifiers

- Increased demand on HMA pavements (ESALs)
- Superpave specifications may require a wider range of binder performance.
- Disposal of waste products
 - Tires, plastic, etc.
- •Willingness to pay more up front for long term benefit
- Reduce draindown

Polymer Modifiers Types of Polymer Modifiers Elastomers Offer stiffness, but also flexibility SBS, SBR, SB, Crumb Rubber, etc. Plastomers Offer high stiffness, but have reduced flexibility LDPE, EVA, Polyolefins, etc.

Polymer Modifiers

- <u>"Possible</u>" improvements offered by polymer modifiers
 - Stiffer mixes at high temperatures
 - •Softer mixes at low temperature
 - Improved fatigue resistance
 - Reduced life cycle costs

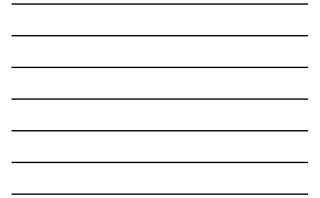


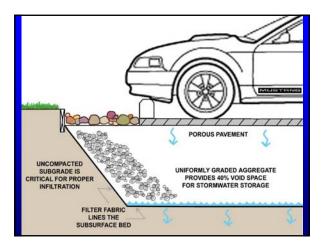
Morris Arboretum Philadelphia, PA

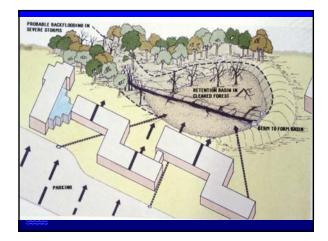
1984

 \odot

Shared Medical Systems Malvern, PA

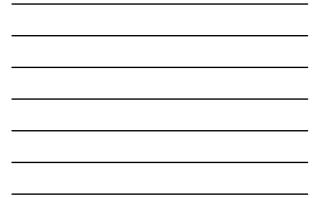

1982

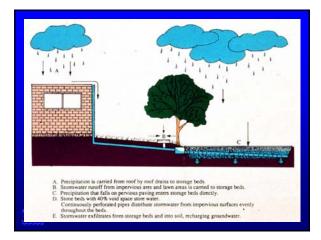


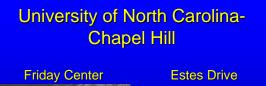

DuPont Barley Mills Office Complex

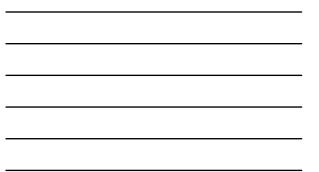
• Preserve Woodlands

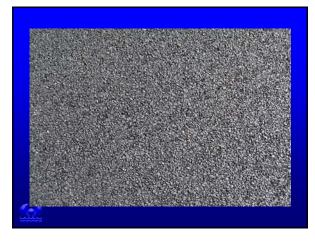
- Porous Pavement w/ Groundwater Recharge
- Reduce Site Disturbance



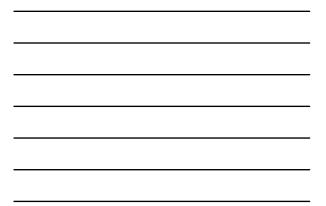


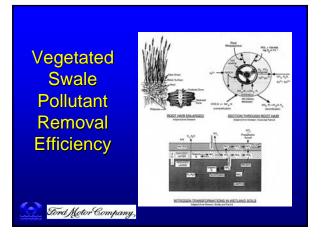






Ford Rouge Center Dearborn, Michigan





Benefits of Porous Pavement

Economic

- Reduces/Eliminates the land space consumed by conventional detention facilities
- Reduces the need for curbs, gutters, inlets, and storm sewers
- Helps prevent excessive flooding

• Aesthetic

- Eliminates the need for unsightly detention basins, rip-rap channels, etc.
- Preserves areas such as woods or open space that would have been destroyed for detention basins
- Eliminates puddling and flooding on parking lots

Ford Motor Company,

Environmental Benefits of Porous Pavement

- Reduces the amount of impervious surface on a site
- Reduces the discharge of pollutants and improves water quality
- Storage Bed limits the peak discharge and reduces stress on existing conventional sewers

Ford Motor Company,

NPS Pollutant Removal Efficiency (% EPA 1993)

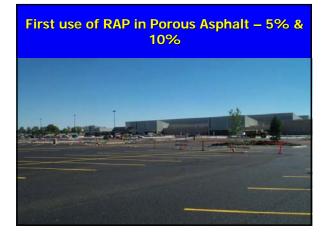
	TP	TN	Pb	Zn
Infiltration Swale	65	60	65	65
 Grass Swale 	20	10	70	60
Porous Pavement	65	85	100	100
Ex Det. Pond	25	30	40	40
Wet Pond	45	35	75	60
 Wetlands 	25	20	65	35

Industrial Stormwater Quality Management

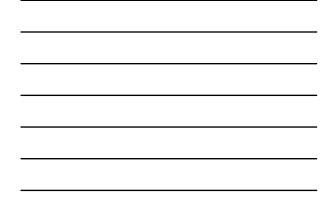
- Use native species And limit future chemical site maintenance.
- Limit artificial areas such as maintained lawns.
- Avoid discharges of wastewater to streams & lakes.
- Avoid excessive earthwork which creates erosion & sediment problems.
- Maintain native vegetation.
- Use low maintenance, water quality BMPs.

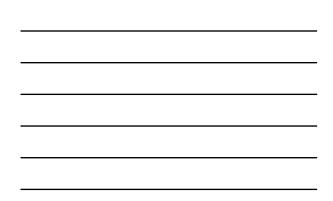
Ford Motor Company,

Commercial: WalMart Aurora


- Porous Parking
 Asphalt
 - Concrete
- Recycled Rubber Walkways
- Bioswales
- Native Prairie Restoration
- Use of Recycled Materials

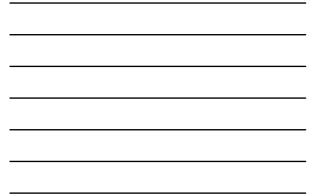
 Fly Ash, Concrete, Recycled Asphalt

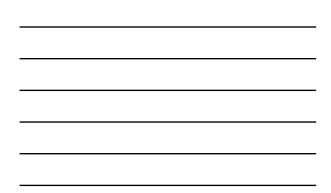




San Diego County Porous Pavement Demonstration

- Porous Asphalt, Porous Concrete, Pavers
- Existing paved site 50 years old
- Soil mantle disturbed, cut 3 feet, compacted
- Water quality and quantity monitored

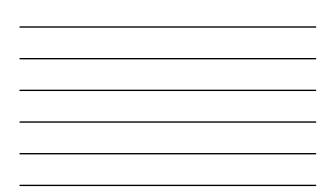




West Hollywood Site Considerations

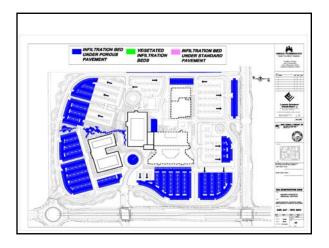
- Average seasonal rainfall = 14.5"
- Urban setting
- Retrofit
- CALTRANS specification w/CA mod.

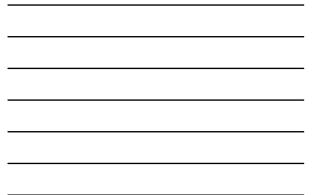
West Hollywood – Pervious Asphalt


Kaiser-Permanente Hospital

 50-acre parcel on the outskirts of Modesto, CA

- 10 acres of porous AC pavement built
- Total recharge of annual rainfall for the site





University of Rhode Island

750 space parking lot Designed with BETA Engineers

Penn New School Philadelphia K-8

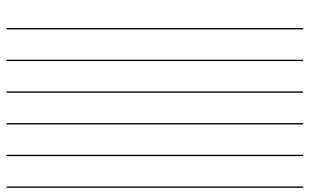
- Soccer Field underlain by Infiltration Bed
- Porous Asphalt Playfield
- Rain Gardens fed by Roof Leaders
- Urban setting 43rd and Locust

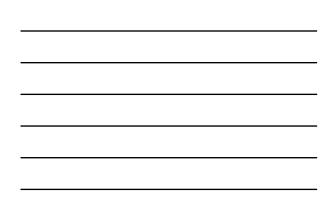
University of Pennsylvania-Alexander School, Philadelphia, PA

LOS ANGELES,CA

VERY ARID CLIMATE

ANNUAL RAINFALL


- 15" PER YEAR
- 4" DIRECT RUNOFF FROM NATURAL
- 7" ET
- 4" RECHARGE



West Hollywood Site Considerations

- Average seasonal rainfall = 14.5"
- Urban setting
- Retrofit

• CALTRANS specification w/CA mod.

Surface runoff increases by 11" (0.92 ft) per year

298,000 GALLONS/ACRE

INCREASED RUNOFF

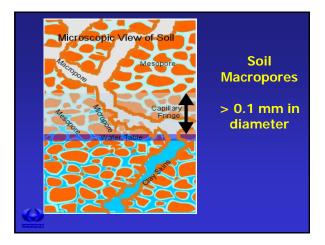
ET ADDED (PLANTS) – 7"/YR
INFILTRATION PREVENTED – 4"/YR

General Rules for Soils Testing for Infiltration BMPs

Purpose of Infiltration Testing

- Determine Suitability for Infiltration BMPs
- Determine Rate of Infiltration
- Design appropriate BMP

Θ


Θ

• Using Soil for Stormwater Management

How Does Water Move through Soil?

Soil is composed of solid particles of different sizes (minerals and organic matter) often "glued" together into tiny aggregates by organic matter, mineral oxides and charged clay particles. The gaps between the particles link together into a meandering network of pores of various sizes. Through this pore space the soil exchanges water and air with the environment. The movement of air and water also allows for heat and nutrients to flow.

Saskatchewan Centre for Soil Research

Formation of Soil Macropores

- Root Systems (living and decaying)
- Water Movement
- Large and small organisms
- Freeze-thaw cycle
- Soil shrinkage (dessication of clays)
- Weathering processes

Characteristics of Soil Macropores

- Provide primary mechanism for air and water movement
- Decrease with depth
- Destroyed by compaction, soil disturbance, loss of organic material
- Convey water under saturated conditions

The conductivity of soil macropores (pores > 0.1 mm in diameter) can be as much as ten times the conductivity of the soil matrix.

Soil Tests

- Lab tests to determine hydraulic conductivity based on grain size, shape, and porosity based on a homogeneous sample will not represent field conditions.
- Darcy's Law may not represent movement through macropores.
- Tests need to be conducted in the field.

Engineering analysis of soils

- Analyzed soil as a structural material
- Bearing capacity, consolidation, etc.
- Little understanding of biological and chemical processes

Θ

Compaction of soil considered essential

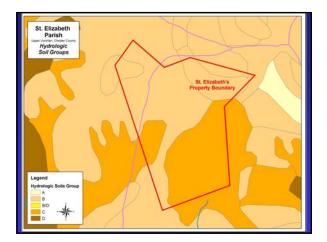
Wastewater analysis of soils

- Design of a stone/sand bed that allows both aerobic decomposition and infiltration
- Shallow bed to provide oxygen transfer
- Daily loading of wastewater
 Deep Hole and Percolation Tests

Soil Testing Recommended Approach

Desktop Evaluation

 \odot


- Site Conditions
- Potential BMP locations
- Deep Hole observation
 Multiple Testing Locations
- Infiltration Tests
- Percolation tests
- Infiltrometer
- Design Considerations
 Safety factor

Desktop Evaluation

- Underlying Geology
- Soils
- Hydrologic Soil Group
- Topography and Drainage Patterns
- Streams, Wetlands, Wells,
- Land Use
 - Currently in Ag?
 - History of fill/disturbance?



Know Your Soils

- Select the right locations for Testing – Low, Wet areas will not drain
- Multiple Testing Locations
- Importance of Deep Hole for Visual Inspection
- Evaluate Soils Percolation Tests – Test near bottom of proposed bed

Deep Hole Tests

- 72" to 90"
 Deep
- 2-1/2' to 3' Wide
- Physically Observe Conditions

Deep Hole Observations

- Soil Horizons
- Soil Texture and Color
- Pores, Roots
- Type and Percent Coarse Fragments
- Depth to Water Table
- Depth to Bedrock
- Hardpan or Limiting Layers

Number and Location of Deep Hole Tests

- Single family 1 test at BMP location
- Larger Systems- 4 to 6 tests per acre
- Additional Tests based on changes in variability in soils, topography, geology, land use, etc.

Better to do many test holes

Deep Hole Observation Affects Design

- Depth of Hardpan Varies
- Layer is Shallow -
 - Excavate
 - Place Beds Beneath
- Hardpan is Deep
 - Place Bed Bottom 2' above Hardpan
 - "Punch Through" with Borings

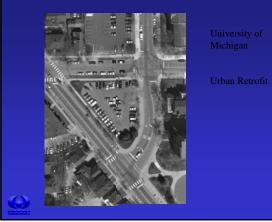
 \bigcirc

Testing Previously Disturbed Areas

• Historic fill

Θ

- Surface compaction
- Deep Hole Observation even more important





How Well Does the Site Infiltrate?

- Percolation Test
 Double Ring Infiltrometer

 ASTM D 3385-03
 ASTM D 5093-90
- Hydraulic Conductivity Lab Test
- Amoozem<u>eter</u>
- Constant Head
 - Limits of Budget and Time
 - Not an Exact Science!

Number and Location of Infiltration Tests

- Minimum 2 per Deep Hole
- At least one test at bed bottom
- Test different horizons

ω

• Methodology- Pa Code Chapter 73

Percolation Tests

- 6" to 10" diameter
- 12" depth

Θ

- Scarify sides and bottom
- Minimum of 8 readings or stabilized rate for 4 consecutive readings

14

Recommendation

- Supplement Perc Tests with Infiltrometer Tests
- Compare variations

• 10% of tests with infiltrometer

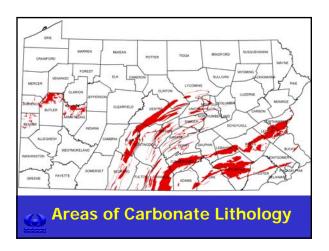
Recommended Approach

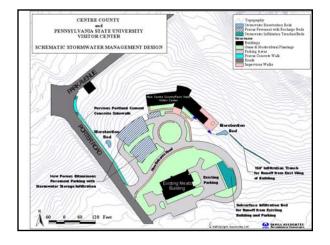
- Desktop Evaluation
- Deep Hole observation
- Infiltration Tests
- Design Considerations
 - Observed Infiltration Rate for Site Suitability
 - Safety Factor for Design: 2

What Not to Do

• Test the Wettest Areas

Θ

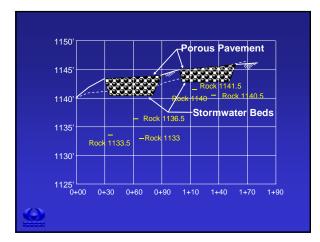

- Do only 1 or 2 tests for a large area
- Try to Perc Bore Holes (30' Deep)
- Excessive Grading and disturbance
- Claim that the Site Does Not Infiltrate

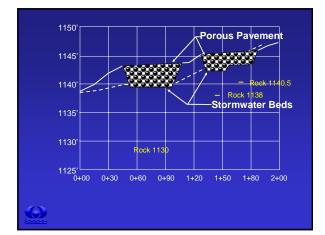

Limestone Considerations

- Geotechnical Investigation
 - Depth to rockPinnacles

 - Sinkhole potential
- Design Considerations
 - Spread It Out! 3:1
 - Avoid concentrating/conveying/deep excavation

Θ





Geotechnical and Soils Testing

- Shallow Borings
 - 15 feet deep
 - 25 feet OC
 - Test Infiltration Areas
- Soils Tests
 - Deep Holes
 - Perc Tests
- Θ

Construction Criteria

- Protect soils Do not compact!
- Protect infiltration BMPs from sediment until drainage area is completely stabilized
- Sequencing
- Staging/stockpiling
- Use clean aggregate
- Establish/protect dense vegetation

 \bigcirc

Protect Integrity of Soils

Options

- 1. "Septic System" Approach? Fence off?
- 2. Build and Protect?
- 3. Construct at end of Job
 - Use as Temporary E & S
 - Final Grading at end of Job
 - Site is stabilized

Θ

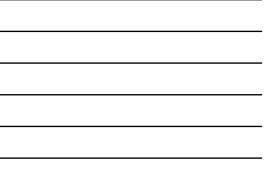
Undisturbed Lands	
	Residential
	Neighborhoods
	1.69 to 1.97g/cc
Golf Courses - Parks	
Athletic Fields	
1 69 to 1 97a/cc	
1.69 to 1.97g/cc	

Designing Infiltration Systems

Site Criteria

- Soil Permeability greater than 0.25 in./hr
- Minimum Bedrock Separation of 2 feet
- Infiltration device at least 3 feet above seasonally high water table

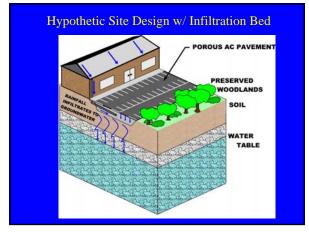
Design Criteria


- Spread It Out!
- 5:1 Impervious to Recharge Area
- Minimize excavation / maximize soil buffer
- Pre-treatment for "hot-spots"
- Construction oversight!!
- Level Bed Bottoms
- Keep it Clean E&S Control

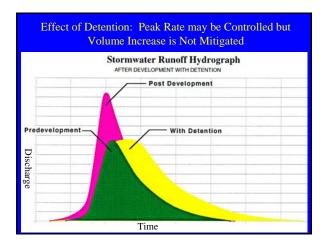
Construction Criteria

- Protect infiltration BMPs from sediment until drainage area is completely stabilized
- Do not compact soil under infiltration areas
- Protect infiltration BMPs from sediment
- Do not compact soil

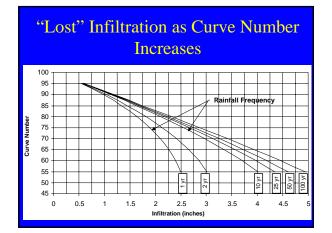
Level Infiltration Beds with Sloping Surface

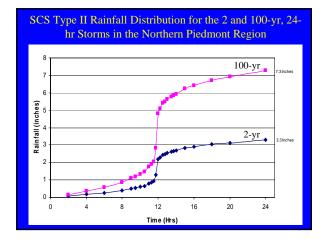


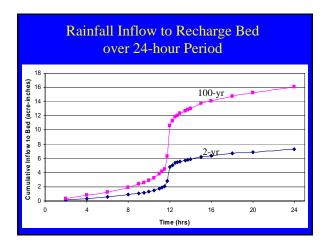
Hydrologic Calculations

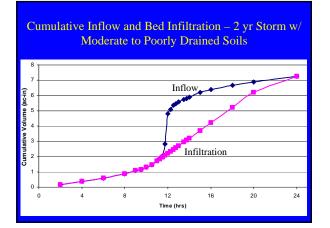

- Net increase in Volume for 2-year storm
- Mitigate Peak Rate for larger storms

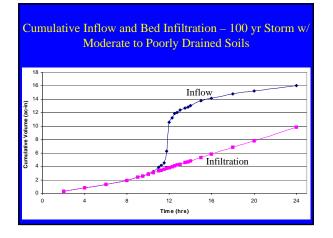
Hypothetic Site Design w/ Detention Basin

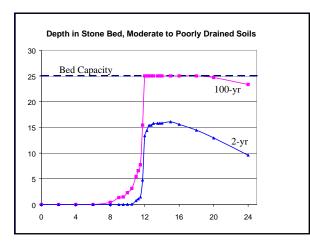


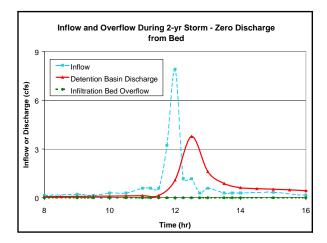


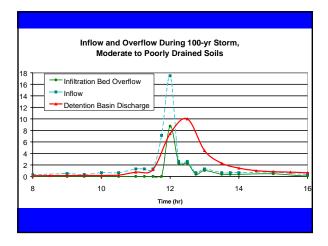


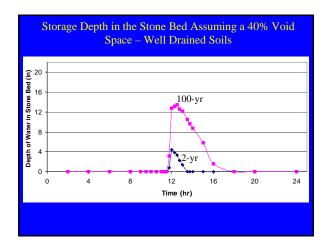


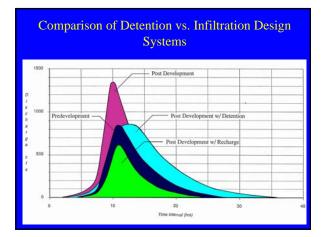












POROUS AC PAVEMENT IN PORTLAND

PORT OF PORTLAND PIER 6 AUTO STORAGE YARD

Existing pavement is both impervious AC and gravel

Goal is to apply pervious AC pavement in gravel areas 40 acre tract

Soil is dredge material from river bed – sandy soil

Original sub-soil is sediment deposits of ancient flood plain Columbia River Valley

> Gravel surface varies 4" to 8" periodically regraded


Significant surface puddles Distributed over tract



Porous pavement design begins by understanding and measuring the sub-surface soil conditions

Porous pavement is the icing on the cake of a stormwater infiltration system

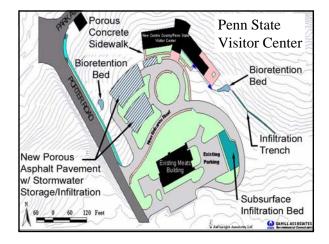
Modeling Infiltration BMPs

CAHILL ASSOCIATES Environmental Consultants West Chester, PA (610) 696 - 4150 <u>www.thcahill.com</u>

Design Goals for Calculations

- 1. Mitigate Peak Rates 2-Year to 100-Year
- 2. No Volume Increase for 2-Year Event
- 3. Maintain Groundwater Infiltration

Provide Calculations for Municipal Approval


Bankfull Flow Forms and Maintains Channel

- Recurrence Interval 1.5 Years
- Higher Flows Exceed Channel Capacity
- More Frequent Bankfull <u>more</u> important than large floods in shaping channel.

The Channel is shaped by the Bankfull Flow

Three (Real Life) Case Studies

- 1. Institutional LID Penn State Visitor Center
- 2. Commercial Small Retail Shopping Center
- 3. Residential High Density Townhouse, Quad, and Singles

Proposed Development 1: Penn State Visitor Center

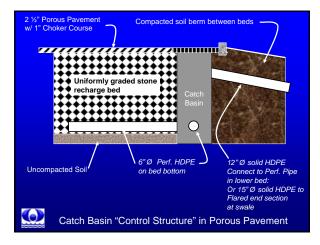
- 4.5 Acre Site
- 1.4 acres Impervious (31%)
 - 15,500 Square Foot Building
 - 2,100 Square Feet Paths
 - 44,250 Square Feet Parking, Roads

28% for People, 72% for Cars!

Penn State Case Study

- Existing (CN = 74):
 4.55-acre meadow on HSG "C" soils
 SCS Lag Time of 18 minutes
- Proposed (CN = 81):
 - Commercial Site
 - 1.1-acres pavement & building
 - 3.1-acres lawn
 - 0.32-acres porous parking (CN 98 used for calcs)
 - SCS Lag Time of 12 minutes
 - Note: No "adjustment" in CN or Lag for LID design!

2-Year Volume Increase							
Design Storm	Rainfall	Existing Runoff*	Future Runoff		rease in Volume		
	(in)	(in)	(in)	(in)	(ft ³)**		
1-Year	2.2	0.45	0.73	0.29	4,748		
2-Year	2.6	0.67	1.01	0.35	5,765		
5-Year	3/1	0.97	1.39	0.35	6,913		
10-Year	3.6	1.31	1.79	0.48	7,936		
25-Year	4.2	1.74	2.29	0.55	9,019		
50-Year	4.7	2.13	2.72	0.59	9,818		
100-Year	5.3	2.61	3.25	0.65	10,671		
* Ba	*Based on Q=(P-0.2S)2 (P+0.8S) S=100/CN-10 **Based on 4.55 acres						


			Storage	Bottom
		Volume of Stone	•	Area
		Below Invert	*	(min)
		(ft ³)	(ft ³)	(ft ²)
Upper Parking Bay		4,955	1,982	3,750
Lower Parking Bay		11,374	4,550	5,225
	Bioretention		0	1500
Inf	iltration Trench	1,420	0	450
Po	orous Sidewalk		0	1,500
	TOTAL:	17,749	6,532	12,425
* Based on 40% void space in stone bed				
Infiltration Bed		3,255	1,302	2,025

Design "Rules of Thumb"

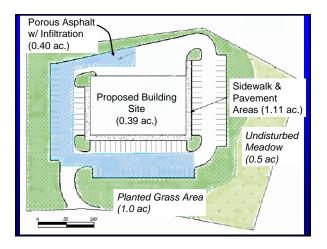
- Retain 2-Year Net Increase in Volume – Net Increase: 5,765 CF
 - Available Storage before Overflow: 6,532 CF
- Infiltrate at a Maximum 5:1 Ratio Impervious:Infiltration Area
 - Impervious Area: 61,000 SF
 - Infiltration Area: 12, 425 SF
 - Ratio 5:1

For the purposes of routing, the two						
Storage/I	nfiltration Bed	ds beneath the Pe	orous Parking ha	ave		
been com	bined into or	ne basin. The sto	brage of the			
infiltration	trench is no	t included.				
		Infiltration	Overflow	Combined		
Elev	Volume	Discharge	Discharge	Discharge		
(ft)	(ft3)	(cfs)	(cfs)	(cfs)		
0.1	417	0.57	0.00	0.5		
1.25	6108	0.57	4.20	4.7		
2.25	7834	0.57	7.25	7.8		
3	15000	0.57	7.25	7.8		
Infiltration	Discharge is	s calculated assu	ming a conserva	ative soil		
infiltration	rate of 2 inc	hes per hour ove	r the entire bed	bottom.		
Measured						
Infil. Q =	Infil. Q = Bottom Area x 2 in/hr					
12,425	SF x 2in/hr =	0.57 cfs				

-	

Time	Q After (Uncontrolled)	Infiltration Rate	Volume into Beds	Volume Infiltrated	Total Storage Volume	
hr	(cfs)	(cfs)	CF	CF	CF	
11	0.42					
11.3	0.58	0.57	624	616	8.6	
11.6	0.83	0.57	899	616	291.9	
11.9	1.78	0.57	1,923	616	1598.8	
12	3.26	0.57	1,174	205	2567.1	
12.1	6.27	0.57	2,255	205	4617.4	
12.2	10.82	0.57	3,895	205	8307.3	
12.3	13.69	0.57	4,927	205	10437.2	
12.4	13.27	0.57	4,777	205	12410.0	
12.5	9.96	0.57	3,587	205	13192.7	
12.6	6.89	0.57	2,480	205	12868.5	
12.7	4.99	0.57	1,798	205	11861.9	
12.8	3.77	0.57	1,357	205	10414.1	
	100-Year Storm Peak Period					

Summary Result 100 Year Peak Rate


- Before $Q_p = 9.8 \text{ cfs}$
- After $Q_p = 13.7$ cfs
- With BMPs $Q_p = 7.2$ cfs

Proposed Development 2: Commercial Shopping Center

- 3.0 Acre Site
- 1.5 acres Impervious (50%)
 - 17,000 Square Foot Building
 - 48,340 Square Feet Parking, Roads

26% for People, 74% for Cars!

Case Study

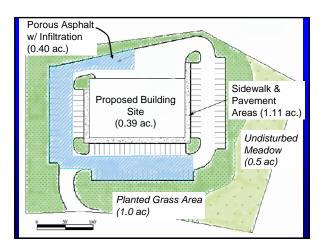
• Existing (CN = 58):

- 3.0-acre meadow on HSG "B" soils
- SCS Lag Time of 12 minutes
- Proposed (CN = 79):
 - Commercial Site
 - 1.5-acres pavement & building
 - 1-acre lawn
 - 0.5-acre undisturbed meadow
 - SCS Lag Time of 6 minutes

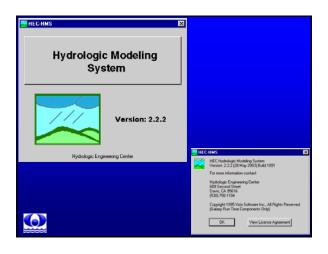
• Size Infiltration System for Net increase in Volume for 2-year storm

Design/Calculation Approach

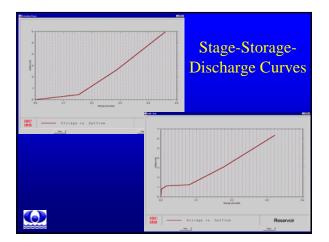
- Mitigate Peak Rate for larger storms
- Compare to Typical Detention Basin Paradigm


Net increase in Volume for 2-year storm

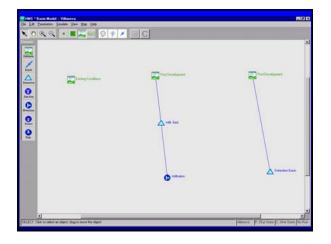
Condition	Area	Weighted CN	s	la	Runoff Q	Runoff Volume
	(ac)		(in)	(in)	(in)	(cf)
EXISTING	3.00	58.0	7.24	1.45	0.31	3,341
Post-Development						
Pervious	1.50	60.0	6.67	1.33	0.37	2,015
Impervious	1.50	98	0.20	0.04	2.87	15,616
TOTAL POST-DEV	3.00	79.0	2.66		1.62	17,631
NET CHANGE IN RUNOFF VOLUME (CF): 14,290						

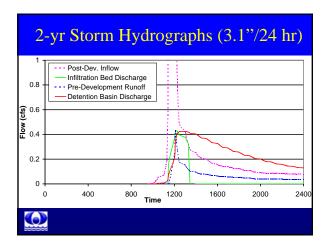

Stormwater Management Techniques

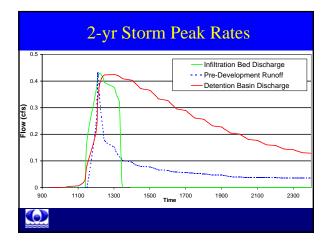
- Innovative Design
 - 0.4 ac (17,500 SF) Porous Asphalt w/ Infiltration Beds (2 foot storage depth)
 - Storage Volume = 14,000 CF (0.32 ac-ft)
 - Steady-state Infiltration Rate = 2 inches/hour
 - Modeled in HEC-HMS as a Diversion
 - Infiltration Rate included in Stage-Storage-Discharge Table
- Conventional Design
 - Detention Basin instead of undisturbed meadow
 - (2 foot storage depth)
- $\bigcirc \text{Storage Volume} = 20,000 \text{ CF} (0.46 \text{ ac-ft})$

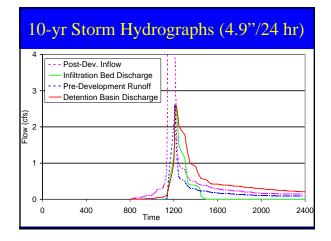


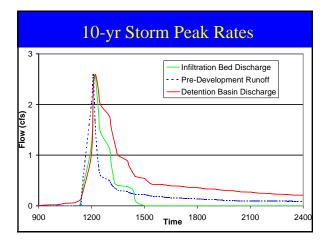
Hydrologic Calculations

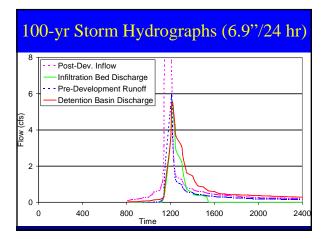

- USDA-NRCS Cover-Complex Method (TR-55)
- US Army Corp of Engineers' *Hydrologic Engineering Center – Hydrologic Modeling System* (HEC-HMS), Version 2.2.2 (28 May 2003)

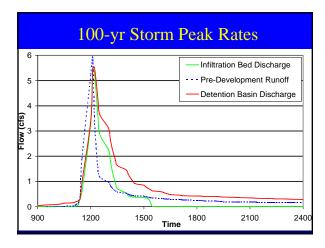








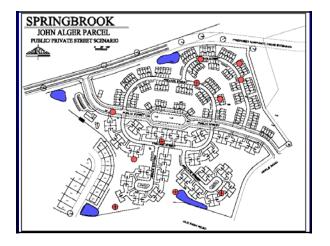


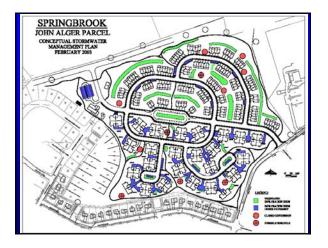


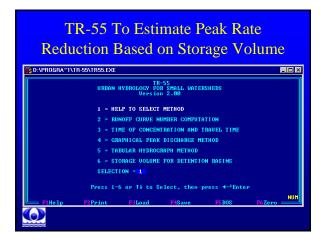
Summary Results – Peak Rates						
Storm Frequency (year)	Existing Runoff Rate (cfs)	Unmitigated Post-Dev. Runoff Rate (cfs)	Infiltration Bed Discharge (cfs)	Detention Basin Discharge (cfs)		
2	0.43	4.58	0.43	0.42		
10	2.59	9.89	2.59	2.59		
25	3.52	11.75	3.40	3.48		
100	5.93	16.14	5.45	5.53		

Summary Results – Infiltration								
Storm Frequenc (year)	Existing Runoff Depth (in)	Unmitigated Post-Dev. Runoff Depth (in)	I otal Infiltration	Infiltration Bed Discharge (in)	Percentage of Existing Volume			
2	0.30	1.26	1.01	0.25	83%			
10	1.11	2.71	1.68	1.03	93%			
25	1.44	3.23	1.87	1.36	94%			
100	2.33	4.48	2.30	2.18	94%			
	Detention							
	Storm	Existing	Post-Dev.	Percenta	age			
	Frequency	Runoff	Runoff Dept	h of Exist	ing			
	(year)	Depth (in)	(in)	Volum				
	2	0.30	1.26	420%				
	10	1.11	2.71	244%				
	25	1.44	3.23	224%				
	100	2.33	4.48	192%				

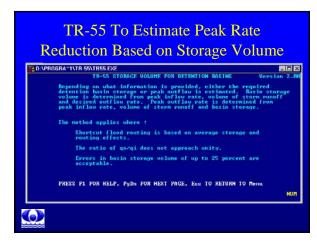
Stormwater Management for The Village at Springbrook Farms


- Site marked by closed depressions and some sinkholes
- Proposed plan consists of:
 - Revised layout with setbacks from depressions and sinkholes
 - Distributed infiltration system, heavily vegetated




Example Drainage Area

- Existing (CN = 70.6):
 - 24 acres of Row Crops
 - <u>Because of Closed Depressions, only 7.5</u> <u>acres discharge offsite!!!</u>
- Proposed (CN = 81.3):
 - 24 acres of townhouse development
 - To avoid collecting stormwater in existing Closed Depressions, <u>all 24 acres discharge</u> <u>offsite!!!</u>


	r	
	L.	
		7

S	umma	ry Resi	ılts – In	filtratio	on
Storm Frequency (year)	Existing Runoff Depth (in)	Unmitigated Post-Dev. Runoff Depth (in)	I otal	Infiltration Bed Discharge (in)	Percentage of Existing Volume
2	0.24	1.33	1.27	0.06	27%
10	0.62	2.84	1.78	1.06	170%
25	0.74	3.28	1.91	1.37	185%
100	1.10	4.56	1.97	2.59	236%
		Det	ention		
	Storm Frequency (year)	Existing Runoff Depth (in)	Post-Dev. Runoff Depth (in)	Percentag of Existin Volume	
	2	0.24	1.33	561%	
	10	0.62	2.84	458%	
	25	0.74	3.28	443%	
	100	1.10	4.56	415%	

Constant-run 201100.02 If and index of the Elitation setting from the elitation for the elita	TR-55 Results
Detection Backe Toronge Relaxes Incluse or 211 Performance Performance Incluse or 211 Performance Performance Inclusion Inclusion Performance Inclusion Inclusion Inclusion Performance Inclusion Inclusion Performance Inclusio	
Control	Park Bullion

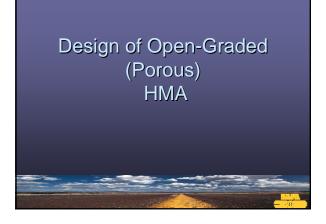
Storm Frequency (year)	Existing Runoff Rate (cfs)	Unmitigated Post-Dev. Runoff Rate (cfs)	Estimated Infiltration Bed Discharge (cfs)	Typical Detention Basin Discharge (cfs)
2	10	42.7	1	10
10	14	56.5	6	14
25	17	65.2	8	17
100	27	90.1	27	27

Designing Infiltration Systems

Site Criteria

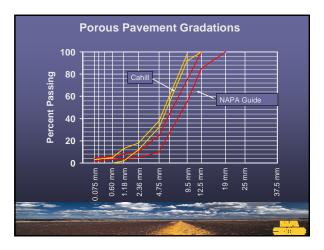
- Soil Permeability greater than 0.25 in./hr
- Minimum Bedrock Separation of 2 feet
- Infiltration device at least 3 feet above seasonally high water table

Design Criteria


- Spread It Out!
- 5:1 Impervious to Recharge Area
- Minimize excavation / maximize soil buffer
- Pre-treatment for "hot-spots"
- Construction oversight!!
- Level Bed Bottoms
- Keep it Clean E&S Control

Construction Criteria

- Protect infiltration BMPs from sediment until drainage area is completely stabilized
- Do not compact soil under infiltration areas
- Protect infiltration BMPs from sediment
- Do not compact soil



Key mix properties

- Voids permeability
- Asphalt content durability
- Draindown performance
- Moisture susceptibility performance

<text>

Step 1. Select design gradation

- Do three blends of aggregate near the coarse, fine and middle of the gradation band.
- Determine VCA_{DRC} of each blend
- Prepare 3 batches of mix from each blend at 6.0 – 6.5% asphalt content.
- Compact 2 specimens each blend
- Test remaining sample each blend G_{mm}

Step 1. Select design gradation

- Determine the density of the mix
 - Dimension
 - CoreLock note may be lower than by dimension
- Calculate the VCA_{MIX}
- Select gradation where VCA_{MIX} <VCA_{DRC} with high air voids.

Step 2: Select Optimum Asphalt Content

- Prepare samples at 3 binder contents, 0.5% increments (5.5, 6.0, 6.5)
- Draindown test at 15°C higher than anticipated production temperature
- Compact mix and determine air voids
- Run Cantabro abrasion test

Step 2: Select Optimum Asphalt Content

- Select binder content
 - Air Voids ≥ 18%
 - Cantabro Abrasion Test (unaged) $\leq 20\%$
 - Cantabro Abrasion Test (aged) ≤ 30%
 - Draindown ≤ 0.3%

Step 4: Evaluate Mix for Moisture Susceptibility

- Use Modified Lottman test
 - Compact using 50 gyrations

 - Use 5 freeze thaw cycles
 - Keep specimens submerged in water during freezing
- TSR ≥ 80%

DOT OGFC Specs

- Open-Graded Friction Course (OGFC)
 - Don't confuse with Asphalt Treated Permeable Bases (ATPB) Not suitable for surfaces
- Common practice some states
- Probably best way to specify mix
 - Contractors are familiar with it.
 - Need to check for key properties are spec'd

Key Properties to Look for in DOT **OGFC** Specifications

- Air Voids key to permeability
- Draindown performance & permeability • Draindown $\leq 0.3\%$
- Asphalt Content for durability
 - Recommend 6.0% minimum
 - Absolute minimum 5.5%
- Max Agg Size 100% passing 19 mm

- -----

Construction of Porous Pavements

Planning

- Plan to build late in construction process
 - Wait till "dirty work is done"
 - Wait till vegetation is established
 Or keep runoff controls in place until it
 - Can excavate bed to about 1' above planned elevation and use for SW control
 - Excavate to plan elevation when ready

Bed Excavation

- Excavate bed to plan elevation using equipment w/ "soft footprint"
- Don't compact subgrade

Berms

- Do not excavate earth berms between beds (if used)
- Should not need compaction

Non-woven Geotextile

- Spread geotextile immediately after fine grading
- Overlap fabric >16"
- Install drainage pipes if used
- Excess fabric (>4') folded over agg. later

Stone Recharge Bed

- Place clean, single size, washed aggregate.
- Do not drive trucks on fabric
- Spread and grade with tracked equipment 8" lifts.
- Light compaction staticProtect pipes

Choker Course

- Place "Choker" course – ½" clean washed aggregate.
 - Purpose to lock up surface for stable paving platform
 - 1 2" thick
 - Grade and compact
 Static
 - Vibratory? (maybe low amplitude, high frequency)

Mix Production

- Watch temperature
 Don't produce higher that
- Don't store for extended periods in silos
- Batch plant lower production
- due to screens
- Fibers reduce draindown
- Requires special equipment
 Batch plant increase dry and
- wet mixing time
- Equipment must be calibrated

Paving

- First fold fabric over agg.
- Paving as usual?
 Recommend track paver
- over agg.
- Stability may be issue
 Avoid disturbing agg surface but it will happen
- Production will be less Limit handwork with polymers

Hauling

- With polymers heavy and thorough coating of release agent.
- Raise bed after spraying to drain puddles

Tarping a must Limit haul distance

Compaction

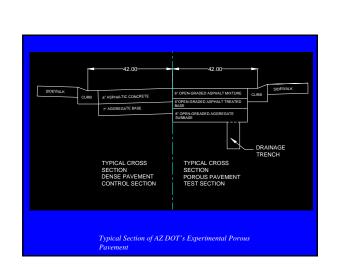
- Less stable than thin OGFC

After Compaction

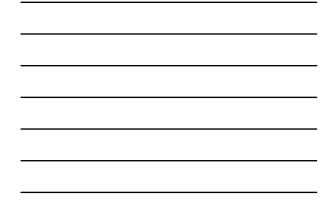
- Limit traffic for 24 hours to allow to set up
- Keep sediment control in place till vegetation established

What about building roadways with porous pavement?

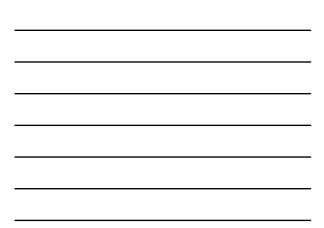
Arizona Highway Dept. 1986


Route 87, Chandler, AZ

- Two lanes of a 4 lane roadway, 3,500 ft.
- Traffic volume 45,000 ADT
- 2-6" pavements over 8" stone base
- edge drain discharges to shoulder



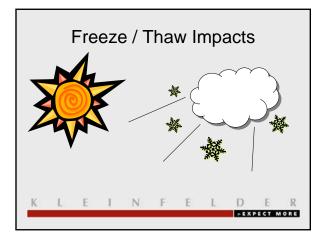






INFEL

- Climate Freeze/Thaw Impacts
- Expansive Soils

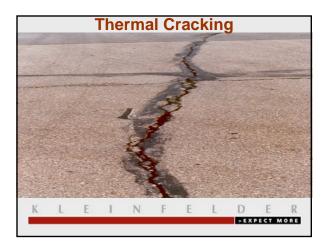

D E

>EXPECT MORE

R

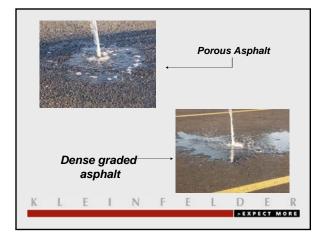
Cost Effectiveness

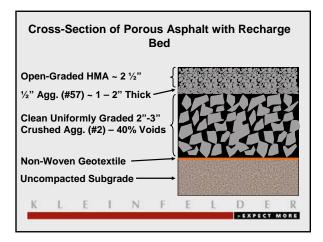
E



Winter Weather and Pavement Many freeze/thaw cycles Expansion and shrinking of moisture/ice Breakdown of pavements

- Thermal cracking
- Potholes
- Heaving/ Settlement

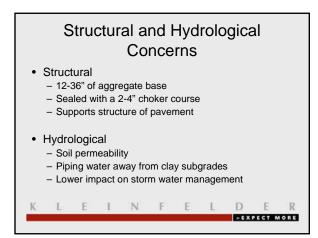



How does porous asphalt endure freeze/thaw??

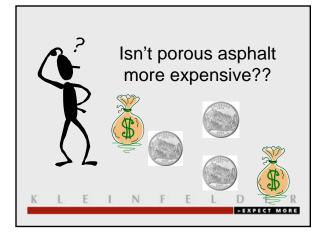
- Porous asphalt allows water to pass through
- Water does not stay on the surface long enough to freeze
- Increased void space does not "trap" water on the pavement
- Less need for snow removal due to heat from the "reservoir" layer



Cold Climate Success Stories Walden Pond Lulea, Sweden (within 1º of arctic circle) Wal-Mart "Green" – Aurora, CO



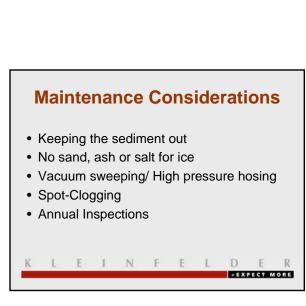
Expansive Soils


- Colorado = expansive soils
- Denver swell test
- Capable of causing serious damage to pavements
- Typical mitigation is excavation and replacement of sub-base

K L E I N F E L D E R

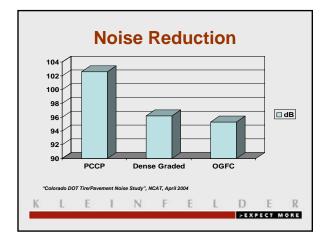
Storm Water Management Benefits

- Reduced need for other BMP's
- Elimination of detention basin
- Reduction in runoff, reduces impact on storm water system
- Convey runoff from other impermeable areas on the site (roofs, etc)

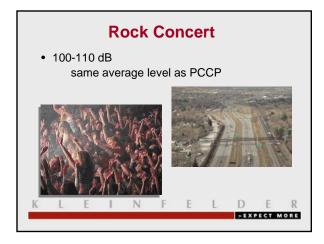

D E

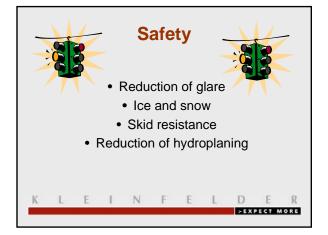
>EXPECT MORE

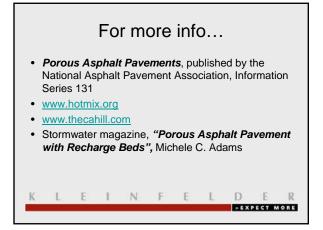
R

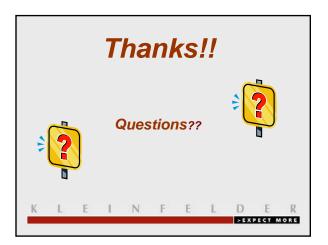

• Contaminants collected on the pavement are naturally filtered through the soil

LEINFEL






Pavement of the Future for **Colorado??**


- Cost effective
- Beneficial to storm water management
- Compatible with Colorado sub-surface conditions
- Increased safety
- Simple technology
- Proven to last more than 20 years LEINFEL

D

R

>EXPECT MORE

