Implementing a Pavement Management System PASER Based – City of Omaha, NE

aniana an

Introductions

JESS HASTINGS, PE Project Manager 10 Years of Experience

TIM O'BRYAN, PE Senior Project Manager 30 Years of Experience

Introduction

Full-Service Consulting Firm

- Transportation Focus
- Value Engineering and Planning Background
- Asset Management

Pavement Management Experience

- Cities, Counties, DOT's and Airports
- PCI Evaluations
- PASER Evaluations

- 29 Offices in 16 States
- +600 Professionals

City of Omaha Case Study

City of Omaha Pavement Management Background

- No Formal Process
- Lack of Documentation
- "Worst First" and Complaint Driven Approach
- Re-active not Pro-active (No concrete maintenance)
- Lane Miles Increase Budget Stagnate/Decrease

What do we do????

Develop a Formal Pavement Management System

- Save maintenance and reconstruction costs
- Provides systematic method of maintaining network
- Increase longevity of pavement
- Assists with prioritization of maintenance and repair work
- Integrates scheduling and different department efforts
- Assist decision-makers with budgets
- Improve effectiveness of resources spent on network

• Pavement does not deteriorate in a linear fashion

• Increase Pavement Longevity with Routine Maintenance

Step 1 – Define Network

City of Omaha, Nebraska

• Approximately 4,600 lane miles of roadway

Roadway Classification	Lane miles
 Major and Minor Arterials 	1175
 Collector Streets 	351
 Local Roadways 	3008
 Park and Frontage Roads 	62
Roadway Surface	Lane miles
Roadway Surface Asphalt 	Lane miles 1788
Roadway Surface Asphalt Concrete 	Lane miles 1788 2598
Roadway Surface Asphalt Concrete Brick 	Lane miles 1788 2598 60
 Roadway Surface Asphalt Concrete Brick Unimproved 	Lane miles 1788 2598 60 150

Step 2 – Establish a Standard Rating System

Internal Assessment

- Integrate Existing Data
- Review historical resurfacing cycles
- Develop Program Objectives

Objectives

- Consistent and Comprehensive Process
- Functional and Easy to Maintain
- Ability to Coordinate with other Divisions
- Tool to Educate Decision Makers
- Cost effective

Step 2 – Establish a Standard Rating System

Many Different Choices

• Very Simple >>>> Extremely Complex

Items Considered

- Subjectivity
- Amount of Measurements
- Specific Distresses and Locations
- Ability to Utilize Empirical Software
- Modelling and Projecting
- Simplicity for Non-Technical Personnel to Understand

Step 2 – Establish a Standard Rating System

PAvement Surface Evaluation and Rating (PASER)

- Developed by the University of Wisconsin
- Visual Inspections with Rating System
- Easy and cost effective to implement
- Correlates rating to maintenance activity

*The Michigan Transportation Asset Management Council selected PASER as the statewide standard

PASER Rating System for Paved Roadways (Asphalt or Concrete)

Rating	<u>Condition</u>	Needed Maintenance or Repair
1	FAILED	Needs total reconstruction.
2	VERY POOR	Severe deterioration. Needs reconstruction with extensive base repair.
3	POOR	Needs major patching & structural overlay or complete recycling.
4	FAIR	Significant aging and first signs of need for strengthening. Would benefit from recycling or overlay.
5	FAIR	Surface aging, sound structural condition. Needs sealcoat or nonstructural overlay.
6	GOOD	Shows sign of aging. Sound structural condition. Could extend life with sealcoat.
7	GOOD	First signs of aging. Maintain with routine crack filling and minor patching.
8	VERY GOOD	Recent sealcoat or new road mix. Little or no maintenance required.
9	EXCELLENT	Recent construction or overlay, like new. No maintenance required.
10	EXCELLENT	New Construction. No maintenance required.

PASER Rating System for Asphalt Roadways

<u>4 Major Categories for Asphalt Pavement Distress</u>

- Surface Defects
 - \circ Raveling, flushing, polishing
- Surface Deformation
 - Rutting, shoving, heaving
- Cracks
 - Transverse, reflective, alligator
- Patches and Potholes

PASER Rating System for Concrete Roadways

4 Major Categories for Concrete Pavement Distress

- Surface Defects
 - Spalling, polishing, map cracking, rebar
- Joints
 - \circ $\,$ Longitudinal and transvers
- Cracks
 - o D-cracking, Corners, Random
- Deformation
 - Blow ups, faulting, heaves, patches, potholes, utilities

Isolated, tight meander crack. Several pop-outs. Remaining joints and cracks all tight and sound. **RATING 6 RATING 3 Badly spalled joint** and open crack. Slab or joint replacement needed.

PASER Rating System for Unpaved Roadways (Gravel or Sealcoat)

<u>Rating</u>	<u>Condition</u>	<u>Needed Maintenance or Repair</u>
1	FAILED	Complete rebuilding required.
2	POOR	Needs addition of aggregate plus drainage maintenance.
3	FAIR	Needs routine regrading plus minor ditch maintenance.
4	GOOD	Good crown and drainage.
5	EXCELLENT	Excellent crown and drainage

PASER Rating System for Gravel Roadways

5 Major Categories for Gravel Road Evaluations

- Crown
- Drainage
 - Ditches and culverts
- Gravel Layer
 - Thickness and quality
- Surface Deformation
 - Washboarding, potholes, ruts
- Surface Defects
 - \circ $\,$ Dust and loose gravel

extensive reworking. ►

🥑 benesch

PASER Rating System for Brick and Unimproved Roadways

<u>Rating</u>	<u>Condition</u>	Needed Maintenance or Repair
1	POOR	Reconstruction needed.
2	FAIR	Significant grading required.
3	GOOD	Routine maintenance or spot grading helpful.
4	VERY GOOD	No improvement needed.

PASER Rating System for Brick Roadways

2 Major Categories for Brick Road Evaluations

- Defects
 - Gaps, breaks, joint erosion, settlement, patches
- Ride Quality

Extensive patching in poor condition.

Step 3 – Establish Network Condition Baseline

- Integrate/Convert Existing Data to PASER Rating
- Establish Roadway Network Segments (To and From)
- Determined a Conversion Method by Comparisons & Assumptions

Conditions	Concrete Ride	Concrete Base	Concrete Patching	Concrete Cracking	Concrete Joints	Concrete Spalling
1	Excellent	No signs of any base failure	No patches	No cracks	All joint patterns are normal and sealed	No spalling
2	Can feel joints and areas of grade when driving	Little base failure; Possible blowup -fix w/ concrete repair	Little patching; utility cuts poured back with concrete	Shrinkage & random cracking (1-2 times/block)	Wide, unsealed joints; Not too late to seal; Joints in good shape	Slight spalling @ time of construction
3	Can feel several joints, cracks, and some base failure	Surface off grade, up to 2X per block	Little patching (low areas by inlets); Fix w/ conc. repair	Longitudinal cracks on 1 side (I.e. sewer trench) Max. 1/panel	Off grade joints w/ some spalling; Not to late to seal	Slight spalling Mostly salt damage
4	Very bad ride; Asphalt and concrete repairs felt	Several areas of base repair; Too late for repair?	Several asphalt patches, too late for concrete repair, good asphalt base	3-4 cracks per panel	Over 50% of joints patched, spalled and failed; Beyond sealing	Over 50% of area spalled
5	Next to impossible	Base is shot; Possible conc. removal and replacement before asphalt	Beyond conc. panel repair; 1/3 asphalt surface, possible R & R with concrete	Beyond concrete panel repair	All joints spalled and asphalt patched; all joints failed	Entire area spalled

Step 3 – Establish Network Condition Baseline

2012 PASER Ratings for Paved Roadways (Asphalt and Concrete)

<u>R</u>	ating	Asphalt	Concrete	Recommended Maintenance Activity
1		0.0	0.0	No Maintenance
2		15.23	0.35	No Maintenance
3		35.47	17.10	Little or No Maintenance required
4		190.98	31.70	First signs of ageing, routine crack sealing
5		81.78	113.01	Crack seal or sealcoat
6		103.28	96.18	Sealcoat or thin non structural overlay(less than 2")
7		161.14	158.73	Asphalt Overlay
8		91.76	273.11	Requires patching and base repair with asphalt overlay
9		41.82	94.45	Needs reconstruction with extensive base repair
<u>1</u>	0	116.87	43.96	Total reconstruction
Total Lane I	Miles	838.33	828.59	
Average Ra	ting	6.4	7.2	

Major Roadways

Step 3 – Establish Network Condition Baseline

2012 MAJOR STREETS

benesch

PASER RATING

Step 4 – Identify Condition Targets

- Overall Rating of 7 for Paved Major/Arterial Roadways
- Overall Rating of 6 for Paved Collector and Local Roadways
- Overall Rating between 2 and 3 for Gravel and Sealcoat Roadways
- Overall Rating of 3 for Brick and Unimproved Roadways

Step 5 – Identify Maintenance Practices

- Routine Maintenance
- Preventative Maintenance
 - Crack and Joint Sealing ------ Street Maintenance/Contractor
 - Surface Treatment------ Contractor
- Pavement Rehabilitation
 - Minor Rehabilitation (non-structural)
 - Street Resurfacing------ Contractor
 - Surface Restoration------ Contractor
 - \circ Major Rehabilitation (structural)
 - Street Rehabilitation------ Contractor
 - Brick Street Repair-----Contractor

Step 5 – Identify Maintenance Practices

a benesch

Pavement Age

- Educate Decision-Makers & Elected Officials
 - Where we were at
 - Where we need to be
- Assess Annual Budget What Does it Accomplish
- Determine Life Cycle Costs and Correlating Annual Budgets
- What's the Cost for Target Life Cycle / Condition Ratings?

- Residential Roadway Network
 - Asphalt 1060 Lane Miles
 - Concrete 1850 Lane Miles
- Assume 1 Lane Mile = 6 City Blocks
- Total Estimated Asphalt Pavement Blocks 6 x 1060 = 6,360 Blocks
- Total Estimated Concrete Pavement Blocks 6 x 1850 = 11,100 Blocks

Estimated Cost to Maintain One Asphalt Residential Block

- Assumes life expectancy of 16 years for asphalt roadways
- Cost includes resurfacing and maintaining (crack sealing)

Resurface One Block	\$10,725
Base Repair and Utility Adjustments	\$1,275
Install ADA Curb Ramps (4 corners)	\$12,000
Crack Sealing (4 year, 8 year, 12 year)	\$8,820
Estimated Cost to Maintain One Block	\$32,820

- 6,360 Blocks of Residential Asphalt Roadways
- For a 16 Year Life Cycle 6,630 ÷ 16 = 398 Blocks/year
- Cost to maintain 398 Blocks/year X \$32,820 = \$13,045,950

Cost to Maintain at various Life Cycles

Life Cycle	24	22	20	18	16
Blocks per year	265	289	318	353	398
Cost to resurface	\$6,360,000	\$6,938,181.82	\$7,632,000	\$8,480,000	\$9,540,000
Crack Seal Year 4	\$779,100	\$849,927	\$934,920	\$1,038,800	\$1,168,650
Crack Seal Year 8	\$779,100	\$849,927	\$934,920	\$1,038,800	\$1,168,650
Crack Seal Year 12	\$779,100	\$849,927	\$934,920	\$1,038,800	\$1,168,650
Total Cost	\$8,697,300	\$9,487,964	\$10,436,760	\$11,596,400	\$13,045,950

Remember to Identify Funding by Departments and Programs!

 Previous example had potentially 3 different departments or programs and therefore different budgets or sources

Department/Program

Resurface One Block	\$10,725	Streets
Base Repair and Utility Adjustments	\$1,275	Streets
Install ADA Curb Ramps (4 corners)	\$12,000	Sidewalk
Crack Sealing (4 year, 8 year, 12 year)	\$8,820	Maintenance

Step 6 – Implement Pavement Management Plan

- Have decision makers and/or elected officials understand current and target conditions of network
- Appropriate funds to different identified strategies
- Determine cycle for re-rating roadways
- Monitor and update roadway network ratings based on work performed and ratings
- Research and implement new strategies

Results of City's Pavement Management System

- Increase of Streets Funding
- Increase of Funding Sources
 - State and Federally funded projects
- Established Documented System
- Increase in Overall Network Rating
- Acceleration of City's ADA Network
- Development of City's Asset Management Plan

Results of City's Pavement Management System

2015 PASER Ratings for Paved Roadways (Asphalt and Concrete)

	2012 Major		2015 Ma	ajor
Rating	Asphalt	Concrete	Asphalt	Concrete
1	0.0	0.0	0.0	0.0
2	15.23	0.35	1.8	0.0
3	35.47	17.10	12.59	0.0
4	190.98	31.70	117.81	19.26
5	81.78	113.01	92.26	92.77
6	103.28	96.18	148.14	149.20
7	161.14	158.73	169.02	281.04
8	91.76	273.11	166.51	263.55
9	41.82	94.45	113.2	110.11
10	116.87	43.96	112.35	27.17
Total Lane Miles	838.33	828.59	933.68	943.1
Average Rating	6.4	7.2	7.0	7.2

Results of City's Pavement Management System

2015 MAJOR STREETS

benesch

Future Goals of City's Pavement Management System

- Integrate Database into City's GIS System
- Add additional features
 - Curb and gutter
 - Shoulders
 - Median Surfacing
 - Guardrail
- Implement Alternative Pavement Preservation and Preventative Maintenance Methods

Additional Information and Sources

- MGPEC
- State and Local Agencies
- FHWA, NHI, NCHRP, AASHTO
- LTAP

Jess Hastings, PE 303-771-6868 jhastings@benesch.com Tim O'Bryan, PE 402-333-5792 tobryan@benesch.com

Questions ?

