

Welcome to the LABORATORY for the CERTIFICATION of ASPHALT TECHNICIANS

(LabCAT) 2026

1

Asphalt Technicians Certification Program

Levels A, B, C and C Minus Design

Introductions

- □CAPA/RMAEC Staff
- □ LabCAT Board of Directors
- □ LabCAT Technical Committee

3

Colorado Asphalt Pavement Association (CAPA) Rocky Mountain Asphalt Education Center (RMAEC)

Tom Peterson, CAPA, **Executive Director**

Tom Clayton, SET CAPA/RMAEC, Director of Training &

Member Services

Vacant 5/2025 CAPA, Director of Engineering
Diane Hammond RMAEC, Training Coordinator

Greg Potts RMAEC, Instructor

LabCAT Board of Directors

Ken Coulson Coulson Excavating
Ed Wells Connell Resources
Craig Wieden CDOT Staff Materials

Jody Pieper RME - CDOT R-2

Brian Dobling Colorado Division Office-FHWA

Craig Vaughn CMT Technical Services

Tim Webb **RME CDOT R-5**

Justin Cupich Kumar and Associates

Tom Peterson CAPA

5

LabCAT Technical Committee

Vincent Battista CDOT, Asphalt Pavement Services Manager
Patrick Kowing FHWA – Central Federal Lands Division
Johnny Lam CDOT, Asphalt Pavement Program

Greg Potts RMAEC, Instructor
Ethan Wiechert Earth Engineering
Tom Clayton RMAEC, (Co-Chair)

Tammy Buck HDR

Eric Biggers Martin Marietta

David Fife United Companies, a CRH Company

David Chelgren Martin Marietta

Mike Gallegos CDOT, R-1 Lab Manager
Lisa Wisner CDOT, R-5 Materials
Jeff Cuypers Brannan Sand and Gravel
Dylan Hullinger Balanced Engineering

Asphalt Technician Certification Program

- ☐ Certification A Laydown
- ☐ Certification B Plant Materials Control
- ☐ Certification C Volumetrics, Gyratory, Stability & Lottmans
- ☐ Certification C Minus Design Volumetrics and Gyratory Compaction
- ☐ Certification E Aggregates
- ☐ Certification I Asphalt Inspector

7

Certification Schedule - Tuesday

8:00 am

Certification Level A

QC/QA Owners, Contractors, Consultants

Random Sampling Plans CP 75
Sampling Aggregate CP 30
Sampling Asphalt Mix CP 41,

Bulk SP G for Roadway Cores CP 44, Method B

In-Place Density by Nuclear Method CP 81

Compaction Test Section CP 82, Field Cores

Certification: Electronic exam on Level A Procedures - 60 minutes Following the electronic exam, laboratory proficiency testing will occur.

Certification Schedule - Wednesday

8:00 am

Certification Level B

Verification of Lab Equipment CP 76, CP-L 5101

Splitting Asphalt Mixture CP 55
Determination of Moisture in HMA CP 43

Bulk SpG for Lab Compacted Specimens CP 44 Method A

Maximum Specific Gravity (RICE)CP 51Asphalt Content by Ignition MethodCP-L 5120Asphalt Content by Nuclear GaugeCP 85Splitting AggregateCP 32

-200 Wash & Sieve Analysis CP 31, AASHTO T11/T27

Certification: Electronic exam on Level B Procedures - 90 minutes
Following the electronic exam, laboratory proficiency testing will occur.

9

Certification Schedule - Thursday

8:00 am

Certification Level C

Mix Volumetric Properties + VMA CP 48
Superpave Gyratory Compactor CP-L 5115
Hveem Stability CP-L 5106
Resistance to Moisture Induced Damage (Lottman) CP-L 5109

Certification: Electronic exam on Level C Procedures - 60 minutes Following the electronic exam, laboratory proficiency testing will occur.

^{*}Certification for "C minus design" will not cover CP-L 5106 or 5109

Safety in the RMAEC Lab

Materials & Equipment

- Nuclear Gauges (Source removed)
- Heated Mixture samples (Level C only)
- Forced Draft Ovens (Level C only)
- Compression Testing Machine (Level C only)
- Gyratory Compactors (Level C only)

11

Other Information

- □Coffee, drinks, and snacks as you walk in
- □Lunch provided
- ☐Breaks as needed
- ☐Restrooms main building hallway on the left

Handouts Provided

□ LabCAT Presentation Manual (slide presentations – this book)	
$oxedsymbol{\square}$ Evaluations (first page in the presentation manual). <i>Please complete the</i>	

critique form and return it prior to leaving our facility

□ **Procedure Manuals** (CP/CP-L/AASTHO/ASTM) These are to be referenced during your electronic exam and will be available to reference while waiting to demonstrate laboratory proficiencies. These <u>MUST BE RETURNED</u> at the end of each day

QR Code (for your electronic exam each day)

☐ Test and Laboratory Proficiency Tracker

13

LabCAT Program Policies

Electronic Exam

- ☐ Electronic exams are closed book. No personal notes are allowed during testing. Electronic exams are timed
- ☐ An over all score of <u>80%</u> or higher is required to pass the exam portion of certification. Tests are scored electronically
- ☐ A <u>second electronic exam will be available</u> following in the event the first exam result is less than the percentage required to pass
- ☐ The option to review the failed questions, is also available before starting the second exam
- ☐ Participant will be required to retest the entire exam and pass with an 80% or higher score

LabCAT Program Policies

Laboratory Proficiencies

- □ Laboratory proficiencies are graded Pass / Fail.
- Laboratory procedure proficiency testing is closed book. Technicians will be required to independently demonstrate proficiency in each laboratory procedure required per certification level.
- ☐ If the technician does not pass the first attempt (**Trial 1**) a second attempt (**Trial 2**) is allowed.

15

Failure/Re-test Policy

Re-Test Fees are \$150.00

No Refund or consideration will be given to a Technician who begins a session and chooses not to complete the session on the scheduled day. A Technician who chooses to leave a session will be considered as failing and will need to retest as described in the "Retest Policy".

Proctors

Where do our proctors come from?

- **□** CDOT
- ☐ Local + Federal Agencies
- □ Contractors
- □ Consultants

How do I become a proctor?

17

Let's Roll!

QUESTIONS?

QUALITY CONTROL QUALITY ASSURANCE

- ☐ <u>Quality Control</u> "Process Control" testing done by or for the producer/contractor
- ☐ Quality Assurance "Acceptance" testing done on behalf of the owner often by hired consultants
- ☐ <u>Check Testing</u> A process to demonstrate a level of precision between two or more laboratories, providing shared confidence for all parties involved
- ☐ Independent Assurance Intermittent testing by the owner (CDOT) to verify precision and provide an "audit" level of assurance on the project

1

THE CONTRACTOR'S PC PROGRAM

- ☐ The contractor is required to perform quality control testing on the materials they produce and install
- ☐ The "Process Control" program is outlined in CP-12A of the CDOT Field Materials Manual
- $\hfill \square$ This Standard describes the best practice to be used when developing
 - appropriate worksheets and forms in a Process Control (PC) notebook
 - Project information (dates, times, locations)
 - Personnel involved, sampling methods used
 - Sample quantities, test specimen sizes
 - · Test result reporting criteria
 - Interpretation of test results

THE CDOT OWNERS "OA" PROGRAM

The "Acceptance" program is outlined in 106.05 of the CDOT Standard Specifications for Road and Bridge Construction manual – it provides guidance for:

- ☐ Frequency guide schedule
- ☐ Sampling locations
- ☐ Project verification sampling and testing
- ☐ Independent Assurance Testing
- ☐ Project materials certification
- ☐ Retention of sampling and testing records

Table 106-1 SCHEDULE FOR MINIMUM SAMPLING AND TESTING FOR HMA

Element	Process Control	Acceptance*, #	Check (CTP)
Asphalt Content	1/500 tons	1/1000 tons	1/10,000 tons
Gradation	1/Day	1/2000 tons	1/20,000 tons
Theoretical Maximum Specific Gravity	1/1000 tons, minimum 1/Day	1/1000 tons, minimum 1/Day	1/10,000 tons
In-place Density	1/500 tons	1/500 tons	1/5000 tons
Joint Density	1 core/2500 linear feet of joint	1 core/5000 linear feet of joint	1 core/50,000 linear feet of joint
Aggregate Percent Moisture ^	1/2000 tons, minimum 1/Day	1/2000 tons	Not applicable
Percent Lime ^,+	1/Day	Not applicable	Not applicable

3

THE CHECK TESTING PROGRM

The purpose of check testing is to compare the testing equipment and personnel that will be used according to the contract. With the successful completion of check testing within acceptable limits, both the Engineer and the Contractor should have confidence in the test results.

The subject test is performed on at least <u>five split samples</u>. In the case of in place density of HMA pavements, seven test locations are used. Calculate the absolute values of the differences between test results on each sample.

Acceptable Limits of Two Laboratory Test Precision			
Element	Column 1	Column 2	Column 3
(Procedure)	σ (Base Data, two operators, split sample)	δ (Maximum Difference, split sample)	δ' (Acceptable Check Test Limit
Asphalt Content [Nuclear Method] (CP 85)	0.25%	0.69%	0.31%
Asphalt Content [Ignition Method] (CP-L 5120)	0.25%	0.69%	0.31%
HMA #4 Sieve (CP 31)	2.04%	5.65%	2.53%
HMA #8 Sieve (CP 31)	1.92%	5.32%	2.38%
HMA #200 Sieve (CP 31)	0.56%	1.55%	0.69%
HMA Voids in the Mineral Aggregate (CP 48)	0.40%	1.11%	0.50%
HMA Air Voids (CP-L 5115)	0.37%	1.03%	0.46%
HMA Hyeem Stability (CP-L 5105)	3.9	10.8	4.8
HMA Maximum Specific Gravity (CP 51)	.009	.026	.011
In-Place Density I IMA (CP 44) (CP 81)	0.70% 0.72%	1.94%	0.07% 0.89%
Longitudinal Joint Density (CP 44)	1.29 %	3.58%	1.60%
Compressive Strength PCCP (ASTM C 39)	192 psi (1324 KPa)	532 psi (3670 KPa)	238 psi (1641 KPa)
Sand Equivalent (CP 37)	3 points	8 points	4 points
Flexural Strength PCCP (AASHTO T 97)	44 psi (303 KPa)	122 psi (840 KPa)	55 psi (376 KPa)
In-Place Density Soils (CP 80)	0.34 pcf (5450 g/m³)	0.94 pcf (15107 g ⁱ glm ¹)	0.42 pcf (6756 g/m²)
In-Place Soil Moisture (CP 80)	0.45 pcf (7210 g/m ²)	1.25 pcf (19985 g/m²)	0.56 pcf (8938 g/m²)

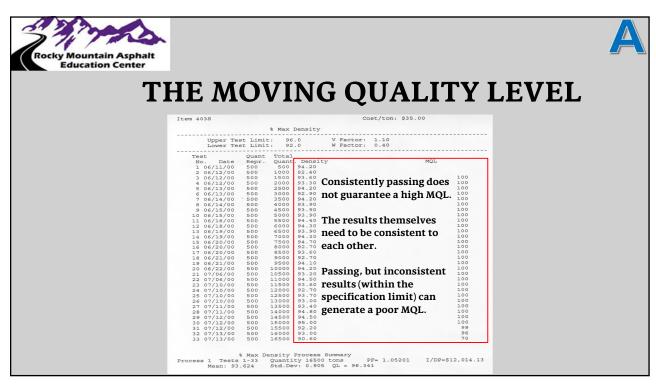
IMPORTANT

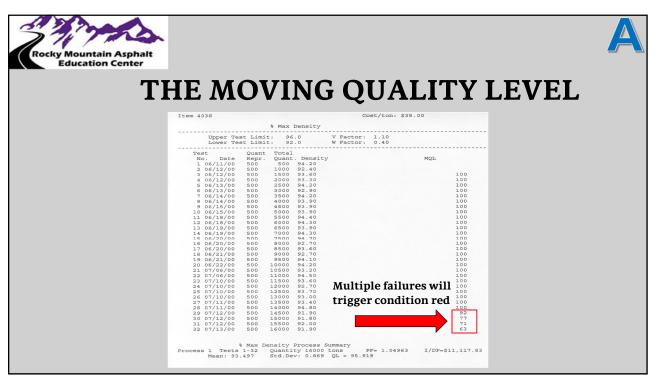
Contractors
who do not
participate in
the check
testing
program
cannot dispute
acceptance
test results!

WHY ARE YOUR TEST RESULTS SO IMPORTANT?

- ☐ The sampling, splitting and overall handling techniques affect test results.
- ☐ Test results must be accurate when input into the CDOT acceptance programs for proper <u>incentive</u> or <u>disincentive</u> to be applied.
- ☐ Test results must be accurate to determine the quality of pavement, which affects both the short term and long term, performance of the roadway.
- ☐ Reputations can be greatly impacted positively and negatively.

5





THE MOVING QUALITY LEVEL

- ☐ Three reference conditions can exist determined by the Moving Quality Level (MQL).
- ☐ The MQL will be calculated per the procedure in CP 71 for Determining Quality Level (QL).
- ☐ The MQL will be calculated using only acceptance tests.

WHAT YOU DO IMPACTS THE PROJECT AT THE HIGHEST LEVEL

QUESTIONS?

Stratified Random Sampling of Materials

CDOT CP 75

1

Stratified Random Sampling of Materials

- ☐ Sampling is one of the most critical steps in materials testing
- ☐ It is the nature of random sampling that some samples will represent below average or above average material

Stratified Random Sampling of Materials

CDOT specifications call for using the

Stratified Random Sampling Process

- ☐ This ensures that any portion of the material on a project has an equal chance of being selected
- ☐Bias *can be* introduced when judgment is used

3

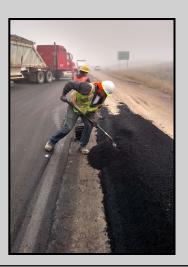
Stratified Random Sampling of Materials

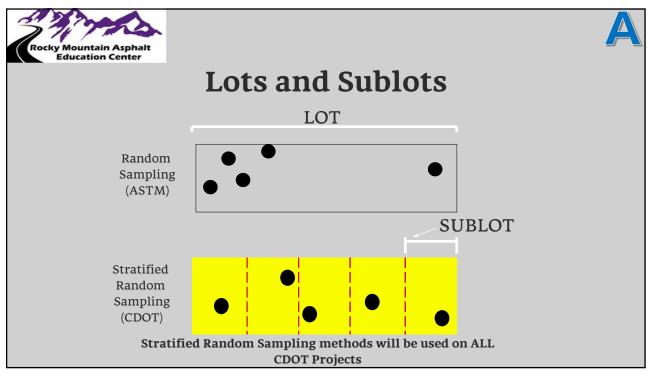
- ☐ If not chosen randomly, the tests may not reflect the true characteristics of the material being evaluated.
- ☐ Stratified random sampling requires that one random sample is selected from each **sub lot**.
- ☐ Ensures that samples are selected uniformly throughout the entire production process.

Random Number Schedule

- ☐ It is the responsibility of the tester to ensure that the minimum sampling frequency is met.
- ☐ The random number schedule should be predetermined and not shared with the supplier or contractor before sample is taken.
- ☐ CP 75 contains complete instructions on accessing and using the programs for this process.

VOIDS 03 ASPHALT 03


5



Random Number Schedule

- ☐ Sampling should take place as close as possible to the values represented on the sampling schedule
- ☐ Major deviations from the sampling schedules should be noted in detail

Standard Method for Sampling of Aggregates

CDOT CP 30

1

Sampling

These methods apply to the sampling of aggregates used in acceptance and quality control from various sampling locations as designated for construction materials including aggregate base course and aggregates for asphalt mixtures.

Key Points

- ☐ Sampling is equally as important as the testing of the aggregate materials
- ☐ Samples must be taken properly to represent the true characteristics of the materials
- ☐ Segregated materials are not to be sampled
- ☐ Samples must be selected from all the material being produced via CP 75 (Stratified Random Sampling)

3

Sampling Responsibilities

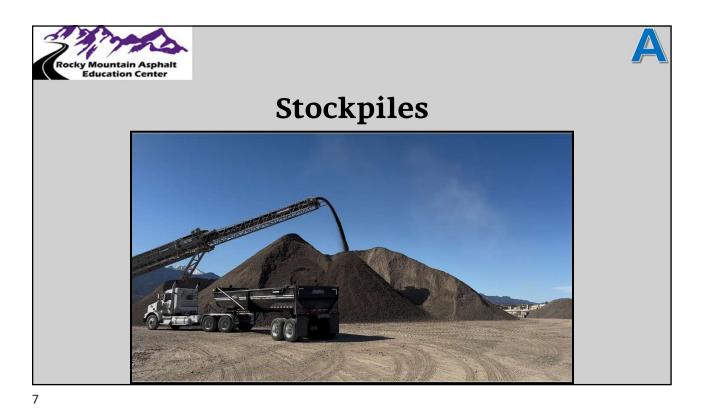
- ☐ The CONTRACTOR

 performs the actual

 sampling of the materials
- ☐ The OWNER'S AGENT (CDOT, Consultants) witnesses the sampling, and takes possession of a split sample

Sampling Locations

- ☐Stockpiles With & Without Power Equipment
- ☐Flowing Aggregate Stream
- ☐Stopped Conveyor Belt
- ☐ Processed Windrows
- ☐Roadway Bases & Subbases
- □Cover Coat Material Spreader


5

Stockpiles

- ☐Stockpile sampling is the most common method of sampling aggregate materials prior to being delivered to the project
- ☐ Sampling should only be done by or under the direction of experienced personnel
- ☐ Power equipment should be used if stockpiles are to be sampled <u>sampling by hand would be the last resort</u>

Power Equipment

Remove segregated material from the stockpile sides

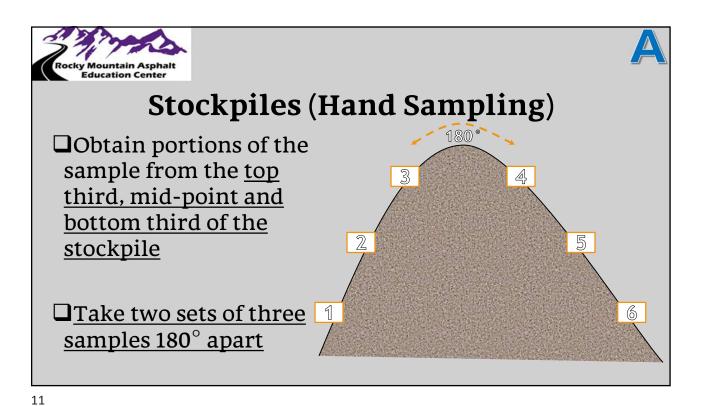
Expose a representative face

Channel the face from bottom to top

Power Equipment

☐Combine and mix the material to form a separate small pile

9



Power Equipment

- ☐Flatten the pile to a depth not thicker than approximately 1ft
- □Sample from at least three (3) locations from the "sample pad"
- ☐Combine all portions to meet or exceed Table 30-1

Stockpiles (Hand Sampling)

Insert the shelf upslope of the sampling point
Remove the top six (6) inches outer layer of material
Use a flat square end shovel, sample full depth
Combine all portions to meet or exceed Table 30-1

REMINDER - sampling with power equipment is preferable, this method is only a back up plan

Stockpiles (Hand Sampling)

Insert the shelf upslope of the sampling point

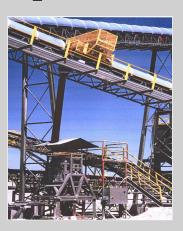
Remove the <u>top six</u> (6) inches outer layer of material

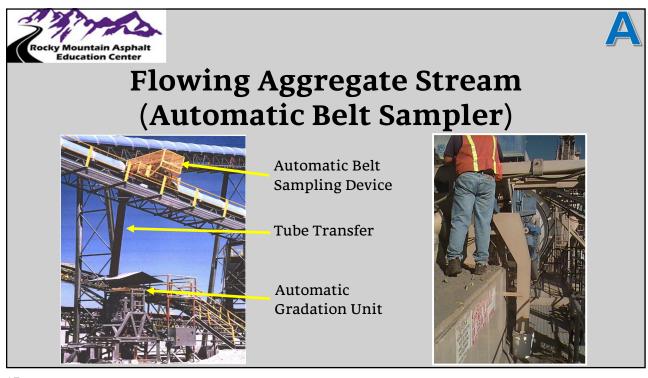
Use a flat square end shovel, sample full depth

13

Flowing Aggregate Stream (Belt Discharge with Hand Tools)

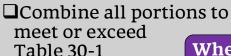
- ☐ If <u>safe and practical</u> to stand within 2' of belt discharge
- ☐ Obtain one or more equal increments
- ☐ Several quick passes from entire cross section of flow
- ☐ Container shall be at least 12" diameter with sufficient capacity to hold entire sample
- ☐ Combine to form field sample that meets or exceeds the minimum recommended in Table 30-1


15



Flowing Aggregate Stream (Automatic Belt Sampler)

- ☐ Must cut the full charge of the belt without any loss of any portion
- ☐ Take one or more increments that when combined meets or exceeds the minimum sample size in Table 30-1

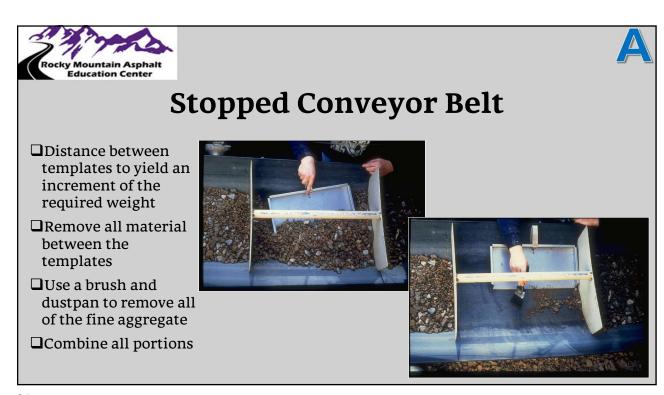


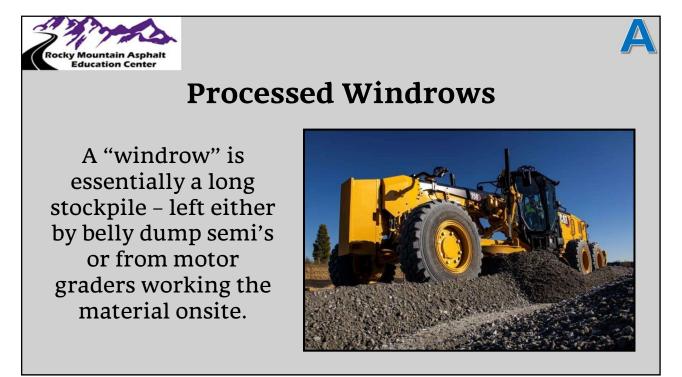
Flowing Aggregate Stream (With Power Equipment)

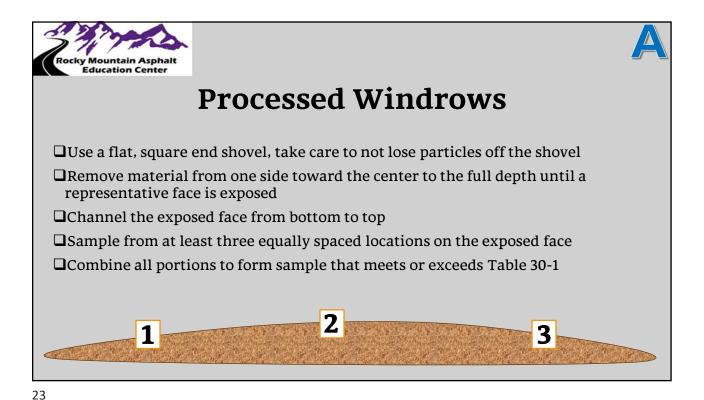
☐Sample from at least 3 locations through full depth of the "sample pad" created using a flat, square end shovel.

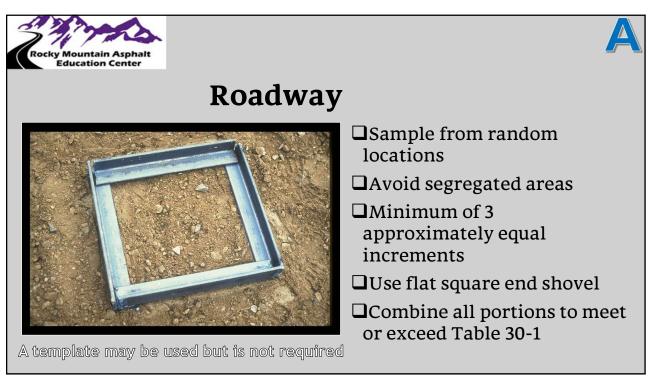
Whenever power equipment is used, the "sample pad" method should always follow.

19




Stopped Conveyor Belt


- ☐Stop the conveyor belt
- ☐ Insert two templates <u>contoured to fit</u> the belt
- □Obtain at <u>least 1 (one) increment (CP</u> 30) that meets or exceeds the value in Table 30-1



Roadway

☐ Remove material full depth of lift, combine the increments

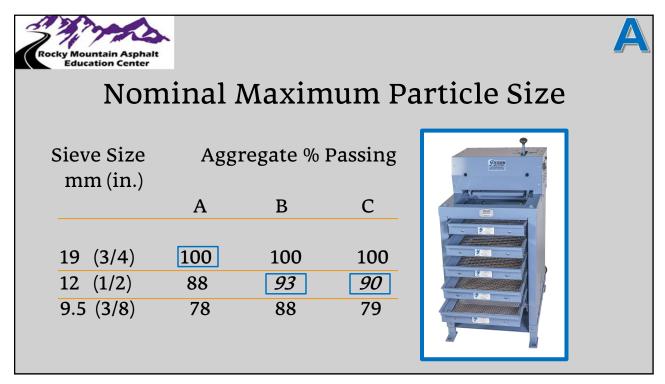
☐ Take care to exclude any underlying material

25

Cover Coat Material Spreader (Chip Seal Application)

- ☐ Last possible location prior to placement on the pavement
- ☐ Spreader must be stopped
- ☐ Samples will be taken from minimum of 3 individual gates as it is falling from the spreader
- ☐ Combine all incriments to meet or exceed Table 30-1

^{*}With the engineer's approval, material may be sampled from the stopped conveyor belt on the transfer device, or from the stockpile


Nominal Maximum Particle Size

Nominal Maximum Particle Size is...

"One sieve size larger than the first sieve that retains more than 10% of the aggregate sample"

(For SHRP/Superpave – as defined in the Appendix of the CDOT FMM – Item 403)

27

Nominal Maximum Particle Size

- ☐ Minimum sample sizes/weights are based off of Nominal Maximum Particle Size
- ☐ Table 30-1 near the end of CP-30 provides values for aggregate sizes between #8 and 3.50"

29

Nominal Maximum Particle Size

- ☐ Minimum sample sizes/weights are based off of Nominal Maximum Particle Size
- ☐ Table 30-1 near the end of CP-30 provides values for aggregate sizes between #8 and 3.50"

TABLE 30-1: Size of Field Samples	TABLE 30-1:	Size of Field Samples
-----------------------------------	-------------	-----------------------

Minimum Weight

Nominal Maximum

Aggregate Size of Aggregates ^A	of Field Sample lbs.
Fine A	ggregate
No. 8	10
No. 4	10
Coarse	Aggregate
3/8 in.	15
1/2 in.	20
¾ in	25
1 in.	30
1 ½ in.	40
2 in.	45
2 ½ in.	50
3 in.	55
3 ½ in.	60

Standard Method of Test for Sampling Asphalt Paving Mixtures

CDOT CP 41

1

Sampling

These methods apply to the sampling of hot mix asphalt (HMA) used for acceptance and quality control testing on CDOT projects.

Key Points

- ☐ Sampling is equally as important as the testing of the HMA materials
- ☐ Samples must be taken properly to represent the true characteristics of the materials
- ☐ Segregated materials are not to be sampled
- ☐ Samples must be selected from all the material being produced via CP 75 (Stratified Random Sampling)

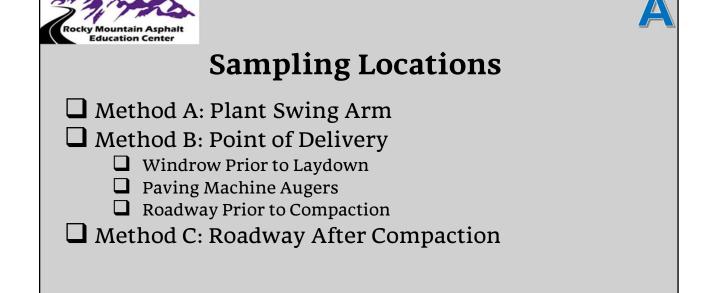
3

Sampling Responsibilities

- ☐ The CONTRACTOR

 performs the actual

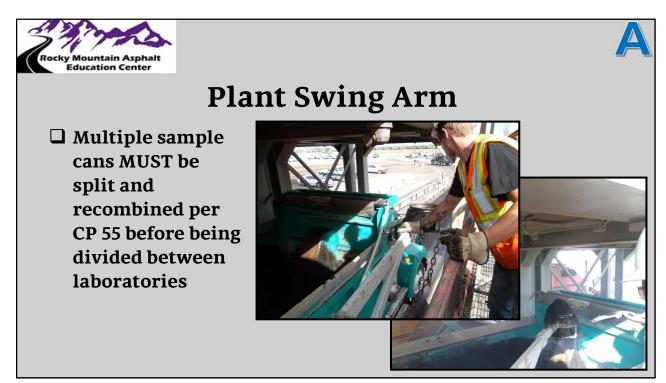
 sampling of the materials
- ☐ The OWNER'S AGENT (CDOT, Consultants) witnesses the sampling, and takes possession of a split sample

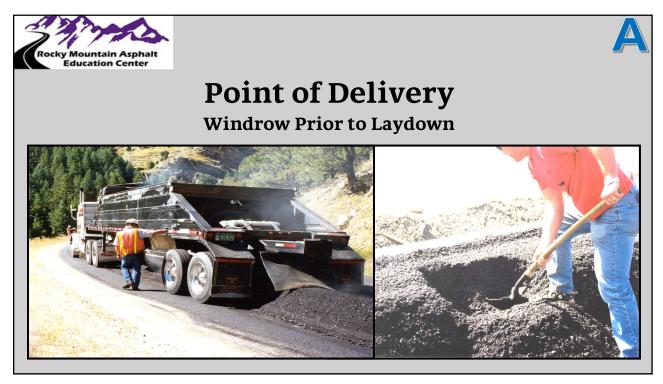


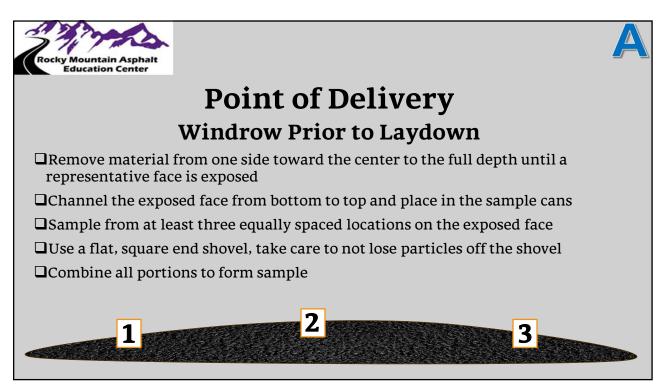
CDOT Asphalt Sample Cans

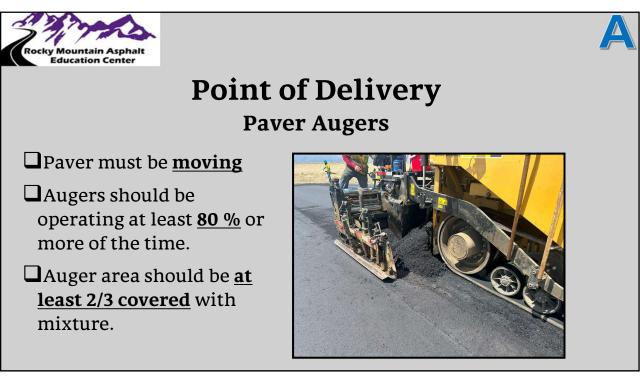
"A container with 3 to 4 gallon capacity made of at least 30gauge non-galvanized metal, having a bail type handle and a tight-fitting lid."

5




Plant Swing Arm


- ☐ The only acceptable "plant sample" method on CDOT projects
- Two methods at the end of either, strike off the mix level with the rim of the bucket (full bucket)
 - 1. Swing the arm with the sample can through discharge fast enough to obtain a representative sample filling the can
 - 2. Prior to discharge, center can directly under discharge flow, filling the can


7

Point of Delivery Paver Augers

☐ A clean square shovel is placed in front of the head of mix that is around the auger. If the auger is rotating the mix will flow onto the shovel

13

Point of Delivery

Paver Augers

- ☐ This video demonstrates generally ideal sampling conditions.
- □ Paver moving □ 2/3 auger coverage
- □80% approx. auger rotation

Point of Delivery Paver Augers

☐ Multiple sample cans MUST be split and recombined per CP 55 before being divided between laboratories

15

Point of Delivery From the Mat

- Obtain at least 3 approximately equal size increments immediately behind the paver
- ☐ Increments shall be the full depth of lift
- ☐ Templates which are placed before mixture is laid down can be used, but are not required

Point of Delivery

☐ Multiple sample
cans MUST be split
and recombined per
CP 55 before being
divided between
laboratories

17

Roadway After Compaction Cutting Cores

- ☐ Obtain at least 3 approximate equal samples for the full depth of material, taking care to exclude any underlying material
- ☐ Each increment shall be obtained by coring, sawing or other methods in such a manner to ensure a minimum disturbance of the material

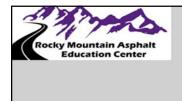
Standard Method of Test for Bulk Specific Gravity and Percent Compaction of Compacted Bituminous Mixtures Using SSD Specimens

CDOT CP 44
Methods B & C

1

BsG of Roadway Cores

- ☐ This procedure provides methods for determining Bulk Specific Gravity of a roadway core to calculate the percent air void analysis and relative compaction
- ☐ The Bulk Specific Gravity is also used in determining the correction factor for nuclear density gauges


BsG of Roadway Cores

- ☐ **Method B** (Rapid Test for Pavement Cores)
 - ☐ Uses **HEAT** from a forced draft oven to remove moisture from the core for final weight
- ☐ **Method C** (CoreDry)
 - ☐ Uses **VACUUM** from the
 CoreDry machine to remove
 moisture from the core for final
 weight

3

Core Preparation

- ☐ Avoid distortion, bending or cracking during and after removal from pavement
- ☐ Separating specimen layers should be done by sawing or suitable means
- ☐ Specimens shall be free from foreign materials such as seal coat, tack coat, foundation material, etc. and they should be stored in a "safe cool place"

Procedure

- □Check water level. (Overflowing)
- Check water temperature 77.0° \pm 1.8°F (25 \pm 1.0°C)
- ☐ Zero the scale, and place core on the cradle in the water bath for the <u>immersed mass</u> (4 ± 1 min.) Record the mass
- Remove core from water, blot with freshly wrung out, damp towel, zero the scale again, and record SSD mass

5

Method B - Rapid Test

- ☐ Determine and record the weight of a pan, record mass of core and place pan and core into a forced draft oven at 230 ± 9 °F (110 ± 5 °C)
- □ <u>OPTIONAL</u> Leave 5 ½ inch (140 mm) or larger, or porous or wet cores in oven until they can be separated into pieces no larger than 2 inches (50 mm)
- ☐ Dry the core for 3 hours and determine and record the mass
- ☐ Check and record the mass at 2-hour intervals until constant mass (no change of more 0.00%) or 24 hour maximum
- ☐ Cool specimen to room temperature and determine the <u>dry mass</u>

Method C - Key Points

- ☐ Determine the immersed and SSD masses as in **Method B**
- ☐ This method allows for cores to be saved
- ☐ Tested the same day guick results
- ☐ Follow procedure in 11.4 of Method C for use of CoreDry apparatus to obtain dry mass

7

Method C - CoreDry

- ☐ Turn the CoreDry to ON position
- ☐ Allow to warm up & go through preparation cycles until "Systems Ready" prompt appears
- ☐ Allow cores to warm to room temperature & towel dry samples of free standing moisture
- ☐ Place core on its side on wire mesh in the vacuum chamber
- ☐ Make sure that moisture trap is cleaned out & place lids on vacuum chamber & moisture trap
- □ Press START
- ☐ CoreDry will cycle until drying is complete. If moisture is visible on core surface, clean moisture trap and run again
- ☐ Record dry mass

Bulk Specific Gravity

$$Gmb = \frac{A}{(B-C)}$$

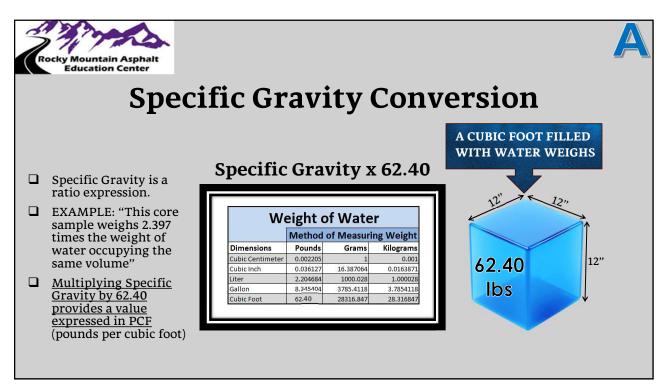
A = mass (in grams) of dry sample in air B = mass (in grams) of SSD sample, in air

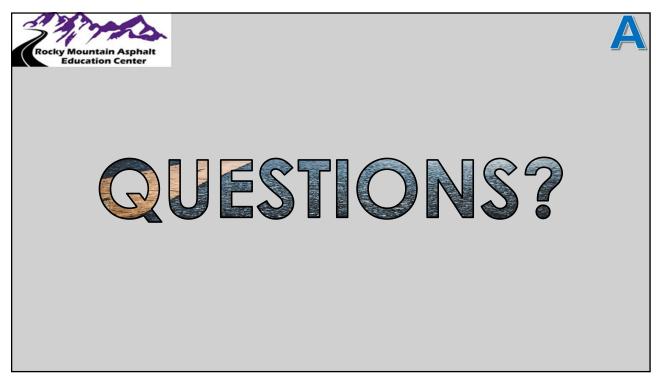
C = mass (in grams) of sample in water

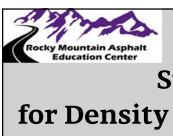
9

Percent Relative Compaction

$$_{\text{Comp.}}^{\text{\%}} = \frac{\text{Bulk Specific Gravity}}{\text{Maximum Specific}} \times 100$$
Gravity (Rice)




Air Voids


Air Voids = 100 - % Compaction

- ☐ Air voids will always be opposite of percent compaction
- EXAMPLE: "A core sample with a percent compaction calculated at 94.7% would have 5.3% air voids"

11

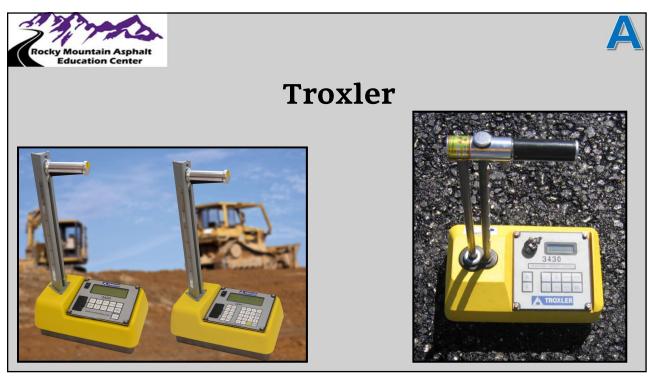
Standard Method of Test for Density and Percent Relative Compaction of HMA Pavement by the Nuclear Method

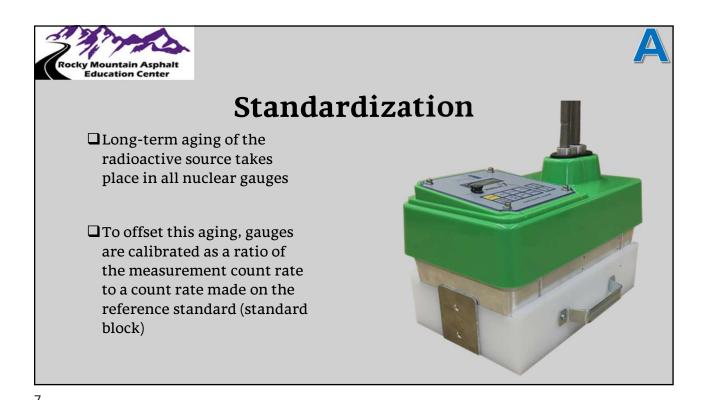
CDOT CP 81

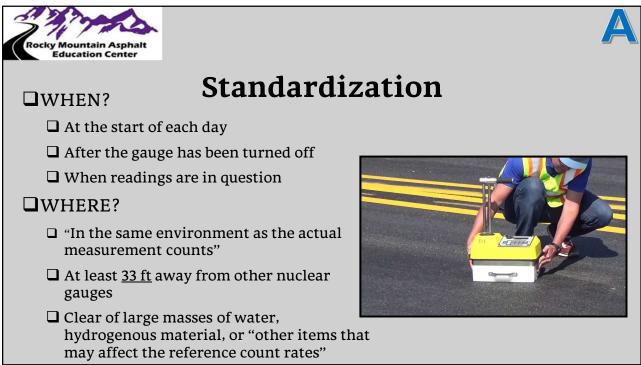
1

Purpose

"For the in-place determination of density of HMA"




Rocky Mountain Asphalt Education Center


CPN

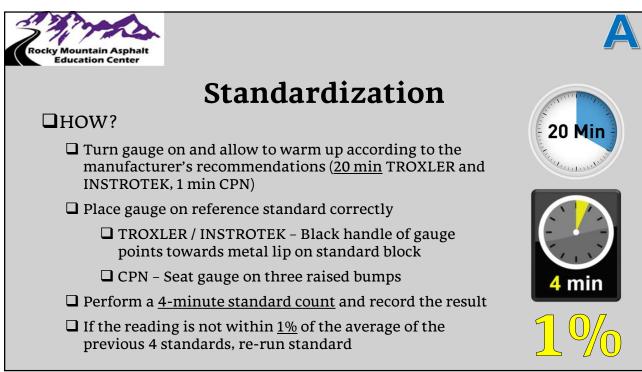
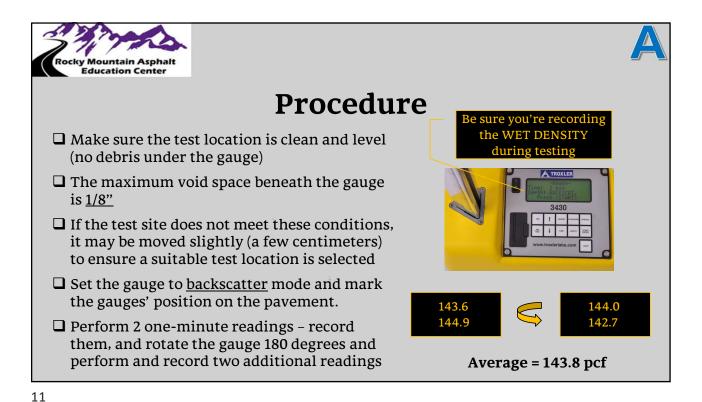

CPN

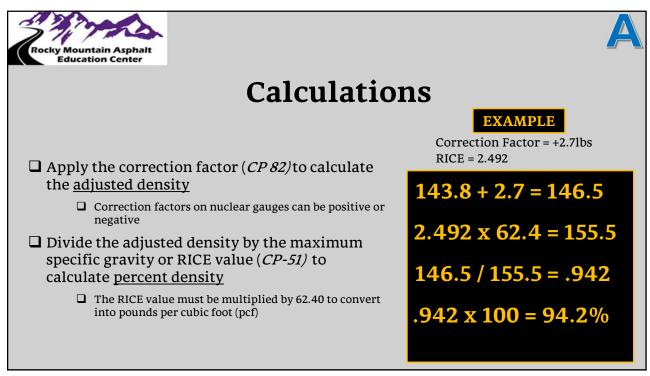
Fig. 10 April 1

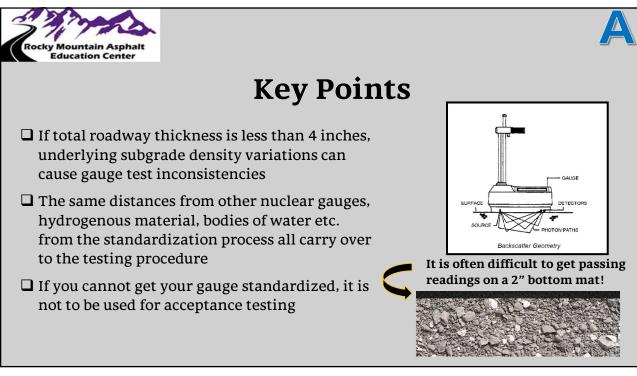
5

Procedure

CP-75 Stratified Random Sampling will be used to determine the test locations


The gauge's long axis will be parallel to the direction of the paving operation (the direction the mat was laid down)


Test location to be minimum 6" away from vertical projections


Test location to be a minimum 12" away from longitudinal joints and the edge of pavement

Of from vertical projections

Paving Operation

Rocky Mountain Asphalt

CUESTIONS?

Compaction Test Section

CDOT CP 82

1

Compaction Test Section

☐ Information about the Compaction Test Section is found in the Standard Specifications for Road & Bridge Construction, section 401.17

□Calculations for the determination of adjusted density & percent compaction of HMA are found in CP 81

Compaction Test Section

- ☐ A section of road is constructed to determine the number and type of rollers and most effective rolling pattern to achieve the specified density
- ☐ On CDOT Projects The test strip should be constructed using the <u>First 500 tons</u> of production
 - ☐ First 300 tons placed to determine the process
 - ☐ Last **200** tons placed to test for density correction

3

Compaction Test Section

- ☐ The contractor determines the methods and procedures to be used for the test section and all subsequent placement of asphalt mixtures for the project
- ☐ This data is recorded during the first 300 tons placed to ensure that the process is successfully established by the time the final 200 tons is placed
- ☐ Data which should be recorded, includes but not limited to:
 - ☐ Rollers type and size
 - ☐ Speed
 - ☐ Frequency
 - ☐ Amplitude
 - ☐ Tire pressure (pneumatic rollers)
 - ☐ # of passes (static or vibratory)
 - ☐ Surface temperature of mat
 - □ ETC...

Procedure

- ☐ CDOT observes coring and testing performed by the contractor
- ☐ Perform 7 random nuclear density tests over the final 200 tons of the compaction test section (CDOT or their representative will lay out test locations)
- ☐ Contractor cuts 2 cores from the footprint of the gauge at each test location
- ☐ CDOT takes possession of one set for acceptance testing and the contractor retains the other set
- ☐ Average the wet density readings for each nuclear gauge at each of the 7 test locations
- ☐ Average the bulk specific gravities (CP 44) of each of the cores from the 7 test locations
- ☐ Compare nuclear tests to cores, derive correction factors for each gauge on the project
- ☐ Determine the acceptability of the compaction test section

11925	de (SA#)	Project No. IN 0253 - 151				Item 403			Micdesign # 142011		
11925 lata		Proj. locati				-%AC.	Lab SpG				
egion	PavinsCon	landar.	12	5, 58 7 50	NCR 16			5.9 Gradeo	2.44 Course	1	
4 Keiwit Western						8 (75			5) Top 1.5"		
Sauge #1 - Diviner Gauge #1 - Diviner Geografi - Diviner Geografi - Diviner Geografi - Diviner Gauge #1 - Di						Gauge #2-Owner Keiwit			Gauge #2 - ID# 6 SN K =2		
ore #	Station	Transverse location	CP 44 (or CP-L 5103) (A) Over dry srt.	(OF 44 (or CP-L 5103) (B) Sat surf dry wt.	(CP44 (or CP-L \$103) (C) Immersed wt.	CP 44 (or CP-L 5 A)B-C Bulk 5s	(203)	Density Bulk SpG x 62.4 (bit)	Nuclear Gauge#1 Wet density	Nuclear Gouge#2 Wel density	
250	15+60	10' Rt	599.1	600.1	342.0	2.325 145.1		145.1	143.5	142.2	
2 25	16+60	7' Rt	689.7	690.6	393.8	2.324 14		145.0	144.0	141.0	
250	17+20	9' Rt	731.6	733.1	415.2	2.301		143.6	143.6	141.5	
253	17+20	4º Rt	519.5	520.2	294.4	2.301 2.282 2.292		143.6	143.2	141.0	
283	19+10	11' Rt	510.1	510.5	287.0			142.4	142.1	140.3	
250	19+71	31 Rt	690.7	699.2	394.3			143.0	143.0	141.7	
250	12+10	5' Rt	627.3	628.1	350.8	2.262	- 1	141.1	141.7	140.4	
Totals Average (Tot						16.00	7 3	1,003.80	1,001.10	988.900	
						2.298	ő	143.400 E)	143.014 (F1)	(F2)	
Correction Factor									+0.4	+2.1	
Connent Cop 15	at 1.5*	Nuclean	r gauge #1				N	uclear ga	eurae #2		
ntended pauge use					Intended (Intended gaugeuse				Figo	
					Gauge op	Gauge operator Egypt					
Geocal						CDOT or company (marse) Reiwit					
ode Septime											
CEDOT or company (name) Geoceal Lab tester for CP 44 Supervisor											

5

Compaction Test Section

Per section 401.17 of the CDOT Standard Specification book for Road and Bridge Construction, a new CTS shall be constructed when:

- ☐A change in the compaction process (new equipment?)
- ☐ Each layer of pavement (bottom mat? top mat?
- □Different subgrade material (base? milled surface?)
- ☐ New mix design

A CTS can also be performed when nuclear gauge readings "come into question"

7

